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How do LLMs work?



Large Language Models (LLMs)

Large deep neural networks (DNNs), currently mostly Transformers

Pre-trained on generic linguistic tasks: e.g. predicting masked words or upcoming text
Can be fine-tuned to more specific tasks on smaller training sets (transfer learning)
Recently more emphasis on using pre-trained LLMs without fine-tuning (via prompting)
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Training a DNN
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Recurrent Neural Network (RNN)
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Encoder-decoder RNN
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Transformer

Attention Is All You Need
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUSs, a small fraction of the training costs of the
best models from the literature.
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Transformer

Each input word has an embedding, which is combined with positional encoding.
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Transformer

Each input word has an embedding, which is combined with positional encoding.
Input goes through multi-head self-attention, creating new contextual encodings for each token.

Contextual encoding for each token is calculated from previous embeddings of each token.

11 went 2 for 3 ad run 5

11 went 2 for 3 ad run 5

went for a run
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BERT and GPT
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BERT: predicting masked tokens
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BERT: predicting masked tokens
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GPT: predicting the next token

The dog chased the
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Semantic representations in LLMs



Methods of studying LLMs

Behavioral
* Fine-tuning for specific tasks, measuring performance
* Prompting pre-trained models directly
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Methods of studying LLMs

Looking inside LLMs
* Probing: mapping activation patterns to linguistic/semantic labels
* Mechanistic interpretation: opening up the computational pipeline
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Survey/commentary papers

Tyler A. Chang and Benjamin K. Bergen. 2024. Language Model Behavior: A Comprehensive
Survey. Computational Linguistics 50 (1): 293-350.

Ellie Pavlick. 2023. Symbols and grounding in large language models. Philosophical
Transactions of the Royal Society 381.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huigi Deng, Hengyi Cai, Shuaigiang Wang,
Dawei Yin, and Mengnan Du. 2024. Explainability for Large Language Models: A Survey. ACM
Transactions on Intelligent Systems and Technology, 15(2): 1-38.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in BERTology: What we

know about how BERT works. Transactions of the Association for Computational Linguistics, 8:
842-866.
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Lexical and pragmatic

Lexical semantics

* Predicting hypernyms in templates: “Arobinis a _
* Probability correlations between synonyms/co-hyponyms
* Similes and analogies

* Challenges with e.g. names and numbers

7
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Lexical and pragmatic

Lexical semantics

* Predicting hypernyms in templates: “Arobinisa ”

* Probability correlations between synonyms/co-hyponyms
* Similes and analogies

* Challenges with e.g. names and numbers

Argument structure

* Thematic roles partly reconstructable via probing
* Sensitivity to verb classes (e.g. causatives)

* Layer separation: lexical — syntactic — thematic
* Theoretical formalism influences results
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Lexical and pragmatic

Discourse & pragmatics
* Tracking entities across a discourse (e.g. characters in a story)
* Sensitivity to the literal-figurative distinction

27



Lexical and pragmatic

Discourse & pragmatics
* Tracking entities across a discourse (e.g. characters in a story)
* Sensitivity to the literal-figurative distinction

World-knowledge
* Success at certain pragmatic reasoning tasks
* Some knowledge of physical properties

Inferring knowledge/desires of characters

Explaining behavior of characters in common-sense terms
Improvement with model size

Reliance on simple heuristics



Lexical and pragmatic: summary

LLMs have vast amounts of distributional information about words, hierarchically organized to
different levels of abstraction: lexical relations, argument structure, discourse.

Much of “world-knowledge” in LLMs is memorized and relies on superficial heuristics.
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Formal semantics

Compositionality

* Challenges with systematic reasoning

LLMs can be prompted to produce semantic parses
Partial dissociability/modularity of representations
Candidates for LLM-internal symbolic processes

Competence vs. performance?
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Formal semantics

Compositionality

* Challenges with systematic reasoning

LLMs can be prompted to produce semantic parses
Partial dissociability/modularity of representations
Candidates for LLM-internal symbolic processes

Competence vs. performance?

Logic

* “Chain-of-thought-prompting”: asking LLMs to reason step-by-step
* Multi-step reasoning is hard

* Notable troubles with negation
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Formal semantics

Negation

* Ignoring negation: “A robin is [not] _”

* Reasoning is more difficult with negated prompts

* Performance of fine-tuned LLMs deteriorates significantly with negation-focused datasets

* Performance on negated prompts descreases as models increase in size
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Formal semantics: summary

Compositionality in LLMs is a topic of contention; algorithmic/mechanistic interpretation needed.
LLMs have some level of logical capacity, but struggle with complex inferences.

Negation is a major problem, and increasing model size does not help (it even hinders).
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Grounding



Grounding

“O knows nothing about English initially, but is very good at detecting statistical patterns. Over time, O
learns to predict with great accuracy how B will respond to each of A’'s utterances”
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Grounding

“O knows nothing about English initially, but is very good at detecting statistical patterns. Over time, O
learns to predict with great accuracy how B will respond to each of A’'s utterances”

“Having only form available as training data, O did not learn meaning.”

“O’s language use will eventually diverge from the language use of an agent who can ground their
language in coherent communicative intents.”
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Grounding

Pavlick (2023); grounding not necessary for (all) semantics

* Internalist conceptual role semantics: possible even if ungrounded

* Externalist causal/informational semantics: possible even for ungrounded representations
* Mapping representations: ungrounded — grounded
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Grounding

Pavlick (2023); grounding not necessary for (all) semantics

* Internalist conceptual role semantics: possible even if ungrounded

* Externalist causal/informational semantics: possible even for ungrounded representations
* Mapping representations: ungrounded — grounded

Much depends on meta-semantics...
* Causal/informational

* Descriptivist/inferential

* Interpretationist

38



Grounding

Pavlick (2023); grounding not necessary for (all) semantics

* Internalist conceptual role semantics: possible even if ungrounded

* Externalist causal/informational semantics: possible even for ungrounded representations
* Mapping representations: ungrounded — grounded

Much depends on meta-semantics...
* Causal/informational

* Descriptivist/inferential

* Interpretationist

Thank you!
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