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How do LLMs work?
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Large Language Models (LLMs)

● Large deep neural networks (DNNs), currently mostly Transformers (Vaswani et al. 2017)
● Pre-trained on generic linguistic tasks: e.g. predicting masked words or upcoming text
● Can be fine-tuned to more specific tasks on smaller training sets (transfer learning)
● Recently more emphasis on using pre-trained LLMs without fine-tuning (via prompting)
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Deep Neural Network (DNN)
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Input

Output Loss

Loss minimization by modifying weights =
back-propagation of error

Target
output

DNN



7

Sequential data
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Recurrent Neural Network (RNN)
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Encoder-decoder RNN
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Encoder-decoder RNN + Attention
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Transformer
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Transformer
Each input word has an embedding, which is combined with positional encoding.

I went runfor a

I_1 went_2 run_5for_3 a_4
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Transformer
Each input word has an embedding, which is combined with positional encoding.

Input goes through multi-head self-attention, creating new contextual encodings for each token.

Contextual encoding for each token is calculated from previous embeddings of each token.

I went runfor a

I_1 went_2 run_5for_3 a_4

I_1 went_2 run_5for_3 a_4
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BERT and GPT
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BERT: predicting masked tokens

BERT

The <MASK> chased the cat

dog
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BERT: predicting masked tokens
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GPT: predicting the next token
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The dog chased the
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GPT: predicting the next token
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Semantic representations in LLMs
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Methods of studying LLMs

Behavioral
● Fine-tuning for specific tasks, measuring performance
● Prompting pre-trained models directly
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Methods of studying LLMs

Looking inside LLMs
● Probing: mapping activation patterns to linguistic/semantic labels
● Mechanistic interpretation: opening up the computational pipeline

https://nlp.stanford.edu/~johnhew/structural-probe.html (Lepori et al. 2023)

https://nlp.stanford.edu/~johnhew/structural-probe.html
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Lexical and pragmatic

Lexical semantics
● Predicting hypernyms in templates: “A robin is a _” (Hanna and Mareček 2021)
● Probability correlations between synonyms/co-hyponyms (Arefyev et al. 2020)
● Similes and analogies (Liu et al. 2022, He et al. 2022, Ushio et al. 2021)
● Challenges with e.g. names and numbers (Wallace et al. 2019, Balasubramanian et al. 2020)
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Lexical and pragmatic

Lexical semantics
● Predicting hypernyms in templates: “A robin is a _” (Hanna and Mareček 2021)
● Probability correlations between synonyms/co-hyponyms (Arefyev et al. 2020)
● Similes and analogies (Liu et al. 2022, He et al. 2022, Ushio et al. 2021)
● Challenges with e.g. names and numbers (Wallace et al. 2019, Balasubramanian et al. 2020)

Argument structure
● Thematic roles partly reconstructable via probing (Tenney et al. 2019)
● Sensitivity to verb classes (e.g. causatives) (Davis & van Schijndel 2020)
● Layer separation: lexical → syntactic → thematic (Tenney et al. 2019, Manning et al. 2020)
● Theoretical formalism influences results (Kuznetsov & Gurevych 2020, Kulmizev et al. 2020)
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Lexical and pragmatic

Discourse & pragmatics
● Tracking entities across a discourse (e.g. characters in a story) (Schuster and Linzen 2022)
● Sensitivity to the literal-figurative distinction (Pedinotti et al. 2021; Griciūtė et al. 2022)
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Lexical and pragmatic

Discourse & pragmatics
● Tracking entities across a discourse (e.g. characters in a story) (Schuster and Linzen 2022)
● Sensitivity to the literal-figurative distinction (Pedinotti et al. 2021; Griciūtė et al. 2022)

World-knowledge
● Success at certain pragmatic reasoning tasks (Petroni et al. 2019, Jiang et al. 2020)
● Some knowledge of physical properties (Apidianaki and Garı́ Soler 2021, Shi and Wolff 2021)
● Inferring knowledge/desires of characters (Summers-Stay et al. 2021, Sap et al. 2022)
● Explaining behavior of characters in common-sense terms (Lal et al. 2022)
● Improvement with model size (Sahu et al. 2022, Kalo & Fichtel 2022)
● Reliance on simple heuristics (Poerner et al. 2019, Lin et al. 2020, Cao et al. 2021)
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Lexical and pragmatic: summary

LLMs have vast amounts of distributional information about words, hierarchically organized to 
different levels of abstraction: lexical relations, argument structure, discourse.

Much of “world-knowledge” in LLMs is memorized and relies on superficial heuristics.



30

Formal semantics

Compositionality
● Challenges with systematic reasoning (Hupkes et al. 2020, Kassner et al. 2020)
● LLMs can be prompted to produce semantic parses (Qiu et al. 2022, Hosseini et al. 2022)
● Partial dissociability/modularity of representations (Lovering & Pavlick 2022)
● Candidates for LLM-internal symbolic processes (Geva et al. 2021, Olsson et al. 2022)
● Competence vs. performance? (Pavlick 2023)
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Formal semantics

Compositionality
● Challenges with systematic reasoning (Hupkes et al. 2020, Kassner et al. 2020)
● LLMs can be prompted to produce semantic parses (Qiu et al. 2022, Hosseini et al. 2022)
● Partial dissociability/modularity of representations (Lovering & Pavlick 2022)
● Candidates for LLM-internal symbolic processes (Geva et al. 2021, Olsson et al. 2022)
● Competence vs. performance? (Pavlick 2023)

Logic
● “Chain-of-thought-prompting”: asking LLMs to reason step-by-step (Kojima et al. 2022)
● Multi-step reasoning is hard (Forbes et al. 2019, Kassner et al. 2020, Saparov and He 2023)
● Notable troubles with negation
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Formal semantics

Negation
● Ignoring negation: “A robin is [not] _” (Ettinger 2020, Kassner and Schütze 2020)
● Reasoning is more difficult with negated prompts (Jang et al. 2022)
● Performance of fine-tuned LLMs deteriorates significantly with negation-focused datasets 

(Hossain et al. 2020, Geiger et al. 2020, Tejada et al. 2021, Truong et al. 2022)
● Performance on negated prompts descreases as models increase in size (Jang et al. 2022)
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Formal semantics: summary

Compositionality in LLMs is a topic of contention; algorithmic/mechanistic interpretation needed.

LLMs have some level of logical capacity, but struggle with complex inferences.

Negation is a major problem, and increasing model size does not help (it even hinders).
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Grounding

A B

(Bender & Koller 2020)
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Grounding

A O B

“O knows nothing about English initially, but is very good at detecting statistical patterns. Over time, O 
learns to predict with great accuracy how B will respond to each of A’s utterances” (p. 5188)

(Bender & Koller 2020)
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Grounding

A O B

“O knows nothing about English initially, but is very good at detecting statistical patterns. Over time, O 
learns to predict with great accuracy how B will respond to each of A’s utterances” (p. 5188)

“Having only form available as training data, O did not learn meaning.” (p. 5189)

“O’s language use will eventually diverge from the language use of an agent who can ground their 
language in coherent communicative intents.” (p. 5188)

(Bender & Koller 2020)
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Grounding

Pavlick (2023); grounding not necessary for (all) semantics
● Internalist conceptual role semantics: possible even if ungrounded
● Externalist causal/informational semantics: possible even for ungrounded representations
● Mapping representations: ungrounded → grounded (Scialom 2020, Abdou et al. 2021)
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Grounding

Pavlick (2023); grounding not necessary for (all) semantics
● Internalist conceptual role semantics: possible even if ungrounded
● Externalist causal/informational semantics: possible even for ungrounded representations
● Mapping representations: ungrounded → grounded (Scialom 2020, Abdou et al. 2021)

Much depends on meta-semantics...
● Causal/informational (Cappelen and Dever 2021, Mandelkern and Linzen 2023)
● Descriptivist/inferential (Pavlick 2023)
● Interpretationist (Lederman and Mahowald 2024)
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Grounding

Pavlick (2023); grounding not necessary for (all) semantics
● Internalist conceptual role semantics: possible even if ungrounded
● Externalist causal/informational semantics: possible even for ungrounded representations
● Mapping representations: ungrounded → grounded (Scialom 2020, Abdou et al. 2021)

Much depends on meta-semantics...
● Causal/informational (Cappelen and Dever 2021, Mandelkern and Linzen 2023)
● Descriptivist/inferential (Pavlick 2023)
● Interpretationist (Lederman and Mahowald 2024)

Thank you!
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