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Linguistic interpretation of LLMs:
Preliminaries and motivation
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Large Language Models (LLMs)

● GPT, Claude, LLaMa, Mistral, BERT...
● Pre-trained on generic linguistic tasks: e.g. predicting next word, predicting masked word
● Large deep neural networks (DNNs), currently mostly Transformers (Vaswani et al. 2017)

● Each input word(/token) has an embedding vector combined with positional encoding
● Multi-head self-attention creates contextual encodings for each word across layers
● Contextual encodings are vectors calculated from previous layer’s embeddings/encodings
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Large Language Models (LLMs)

● Proposed to attain linguistic competence without innate language-specific capacities                  
(vs. rule-based NLP, generative linguistics)
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Large Language Models (LLMs)

● Proposed to attain linguistic competence without innate language-specific capacities                  
(vs. rule-based NLP, generative linguistics)

● ...but this is controversial
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Model interpretation: motivation
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Model interpretation: motivation

“Whenever I fire a linguist our system performance improves” (attributed to Jelinek 1988)

“Due to the otherwise opaque, black-box nature of [LLMs], researchers have employed 
aspects of linguistic theory in order to characterize their behavior. Questions central to syntax 
— the study of the hierarchical structure of language — have factored heavily into such work.” 
(Kulmizev and Nivre 2022: 02)

vs.
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Model interpretation: methods

Behavioral techniques (Linzen & Baroni 2021, Chang & Bergen 2024)
● Fine-tuning: additional training of pre-trained model with task-specific data
● Prompting: direct use of pre-trained model with task-specific instructions (prompts)

Pre-training:

Fine-tuning:

Pre-
training 

data

(Mahowald 2023)

Fine-
tuning-

data
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Model interpretation: methods

Attention visualization (Bahdanau et al. 2015)
● Displaying the allocation of attention per contextual encoding of each word
● Shows which words are most relevant for encoding other words

(Bahdanau et al. 2015)
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Model interpretation: methods

Chain-of-thought (Kojima ym. 2022, Wei ym. 2022, Saparov & He 2023)
● Showing an example multi-step inference with intermediate states in prompt
● LLM starts using similar intermediate states in other multi-step inference tasks

(Wei ym. 2022)
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Model interpretation: methods

Looking inside LLMs (Belinkov 2022, Conmy ym. 2023, Wu ym. 2023)
● Probing: mapping embeddings to interpretable target labels (e.g. linguistic structures)
● Mechanistic interpretation: isolating computational cirquits via causal intervention

https://nlp.stanford.edu/~johnhew/structural-probe.html (Lepori et al. 2023)

https://nlp.stanford.edu/~johnhew/structural-probe.html
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Model interpretation: theoretical challenges

Competence vs. performance (Dupre 2021)
● LLMs are typically evaluated based on performance: success across input-output tasks
● Linguists often aim to analyze competence: abstract aspects of cognitive architecture

Strong vs. weak generative capacity (Buder-Gröndahl 2023)
● Classification of expressions (based on e.g. acceptability) concerns weak generative capacity:  

which strings a grammar produces
● Linguists often aim to analyze strong generative capacity instead: which structural descriptions 

a grammar produces (Ott 2017) 



Strong generative capacity
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Weak vs. strong generative capacity

“Let us say that a grammar weakly generates a set of sentences and that it strongly generates 
a set of structural descriptions (…) Suppose that the linguistic theory T provides a class of 
grammars G1, G2, ..., where Gi weakly generates the language Li and strongly generates the 
system of structural descriptions Σi. Then the class {L1, L2, ...) constitutes the weak generative 
capacity of T and the class {Σ1, Σ2, ...) constitutes the strong generative capacity of T.”

(Chomsky 1965: 60)
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Weak vs. strong generative capacity

G1:

S → NP VP

NP → N

VP → V NP

N → John | Mary

V → saw

G2:

S → VP NP 

NP → N

VP → NP V

N → John | Mary

V → saw

L = {John saw Mary,
        Mary saw John} 
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Strong equivalence: first attempt

Σ(G) = set of structural descriptions (SDs) generated by G

G1 and G2 are strongly equivalent iff Σ(G1) = Σ(G2) (Chomsky & Miller 1963)
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Strong equivalence: first attempt

Σ(G) = set of structural descriptions (SDs) generated by G

G1 and G2 are strongly equivalent iff Σ(G1) = Σ(G2) (Chomsky & Miller 1963)

Problem: grammars can be strongly equivalent without having identical SDs (Kuroda 1976)
● LTAGs and HPSGs (Yoshinaga et al. 2002)
● LCFRSs and sPRCGs (Mery et al. 2006)
● TAGs and monadic linear CFTGs (Kepser & Rogers 2011)
● TAGs and CCGs (Schiffer & Maletti 2021)
● MGs and MCFGs (Stabler 2013)
● MGs and single-movement normal form MGs (Graf et al. 2016)
● (...)
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Strong equivalence: second attempt

Σ(G) = set of structural descriptions (SDs) generated by G

G1 and G2 are strongly equivalent iff SDs in Σ(G1) are isomorphic to SDs in Σ(G2)               
(Kornai & Pullum 1990)
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Strong equivalence: second attempt

Σ(G) = set of structural descriptions (SDs) generated by G

G1 and G2 are strongly equivalent iff SDs in Σ(G1) are isomorphic to SDs in Σ(G2)               
(Kornai & Pullum 1990)

Problem: which relations need to be preserved? (Miller 1999: 5)

“it is not altogether clear how to compare the strong generative capacities of linguistically 
significant models (…) Although many of these models give sets of labeled phrase structure 
trees, there generally is information produced from these trees which differs from model to 
model”

(Rounds et al. 1987: 351)
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Plan: build on prior formal definitions of SGC

Miller (1999): generic definition of SGC for linguistic formalisms (phrase-structure, dependency)

Rogers (1998): definition of linguistic formalisms with the SGC of context-free grammar (CFG)

Both use model theory, but in different ways:
● Miller: model-theoretic meta-semantics for linguistic theories/grammars
● Rogers: defining linguistic theories/grammars as models of a logical meta-language

Aim: utilize these for LLM-interpretation
● Put the analyses together to yield an explicit generic account of SGC for CFG
● Replace relevant parts of the account with LLM-friendly notions
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Miller (1999): Model-theoretic definition of SGC

Interpretation function IFT→ID  maps SDs in formalism T to interpretation domain ID

Interpretation domain for constituency (IDC): set of constituent structures
● Occurrences SO: set of pairs <v, i> where v is a vocabulary item and i is a (unique) index
● Constituent structure Γ on SO: set of non-empty subsets of SO

CFG: SD:

Γ= { {<John, 1>, <saw, 2>, <Mary, 3>},
{<saw, 2>, <Mary, 3>},
{<John, 1>},
{<saw, 2>},
{<Mary, 3>} }

Constituent structure:
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Miller (1999): Model-theoretic definition of SGC

SGD of grammar/theory T: subset of an Interpretation Domain that can be represented by T

Subset of IDC that can be represented by CFGs must satisfy the following:
● SO belongs to Γ (i.e. there is a constituent dominating all occurrences: the root non-terminal)
● If E1 and E2 belong to Γ, and the intersection of E1 and E2 is non-empty, then:

1. E1 is included in E2; or

2. E2 is included in E1

Can be expanded further
● Allowing syncategorematic occurrences: For all <v, i>  S∈ O: {<v, i>}  Γ∈
● Labels: relating each (non-syncategorematic) constituent to a label from VN

● Linear order: treat indices of occurrences as ordered, disallow discontinuous constituents
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Rogers (1998): Logical account of CFGs

L2
K,P: monadic second-order metalanguage for expressing typical syntactic properties

Models of sentences of L2
K,P are syntax trees

Proof: ϕ is a sentence of L2
k,p iff

models of ϕ = trees generated by some CFG
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Rogers (1998): Logical account of CFGs

L2
K,P

● individual constant symbols: K, predicate symbols: P
● variables: X = X0 U X1, where: X0 range over individuals and X1 over sets of individuals
● relations:  (parent), ◁ ◁* (domination), ◁+ (proper domination),  (left-of order), ≺ ≈ (equality)
● logical connectives, quantifiers, and grouping symbols: , , ¬, , , (,), [,]∧ ∨ ∀ ∃
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Rogers (1998): Logical account of CFGs

Tree axioms A1
T:

Induction axioms:

A1 ( x∃ )( y∀ ) [x ◁* y]

A2 ( x,y∀ ) [(x ◁* y  y∧  ◁* x) → x ≈ y]

A3 ( x,y,z∀ ) [(x ◁* y  y∧  ◁* z) →(x ◁* z)]

A4 ( x,y∀ ) [x ◁ y] →(x ◁+ y  ∧
( z) [x ∀ ◁* z z∧  ◁* y) → (z ◁* x y∨  ◁* z)])]

A5 ( x,z∀ ) [z ◁+ x → ( y∃ )[y ◁ x]]

A6 ( x,z∀ ) [x ◁+ z → ( y∃ )[x ◁ y y∧  ◁* z]]

A7 ( x,y∀ ) [x  ≺ y ↔ (¬x ◁* y  ¬y∧  ◁* x )  y  x∧ ⊀ ]

A8 ( w,x,y,z∀ ) [(x  ≺ y  x∧  ◁* w  y∧  ◁* z) → w  z≺ ]

A9 ( x,y,z∀ ) [(x  ≺ y  y∧   z) → x  z]≺ ≺

A10 ( x) [∀ ( y) [∃ x ◁ y] →( y) [∃ x  ◁ y ∧( z) [∀ x  ◁ z → z  y]]]⊀

A11 ( x) [∀ ( y) [∃ x  y] ≺ →( y) [∃ x  y ≺ ∧( z) [∀ x ≺ z → z  y]]]⊀

A12 ( x) [∀ ( y) [∃ x  y] ≺ →( y) [∃ x  y ≺ ∧( z) [∀ x ≺ z → y  z]]]⊀

AWF–D ( X∀ ) [( x∃ )[X(x)] → ( x∃ )[X(x)∧( y∀ ) [y ◁+ x → ¬X(y)]]

AWF–L ( X∀ ) [( x∃ )[X(x)] → ( x∃ )[X(x)∧( y∀ ) [y  x → ≺ ¬X(y)]]
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Rogers (1998): Logical account of CFGs

Tree axioms A1
T:

Induction axioms:

A1 Every tree contains a root non-terminal

A2 Domination is anti-symmetric

A3 Domination is transitive

A4 Domination does not allow a node to fall   
properly between a node and its parent

A5 Every node except the root has a parent

A6 Every non-trivial path from x includes a child of x

A7 All nodes are related by domination or order (not both)

A8 Subtrees rooted at ordered nodes are ordered

A9 Order is transitive

A10 Order has a minimum: a parent has a left-most child

A11 Order is discrete in one direction (left-most element)

A12 Order is discrete in other direction (right-most element)

AWF–D Proper domination is well-founded: there is no infinite sequence of nodes properly dominating each other

AWF–L Left-of ordering is well-founded: there is no infinite sequence of nodes left of each other
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Rogers (1998): Logical account of CFGs

Models of L2
K,P: < , , , , , 𝓤 𝓘 𝓟 𝓓 𝓛 𝓡p>p∈P, where:

●  𝓤 is a non-empty domain
●  𝓘 is a function from K to  (constants)𝓤
●  𝓟 is a relation interpreting  (parent)◁
●  𝓓 is a relation interpreting * (domination)◁
●  𝓛 is a relation interpreting  (left-of order)≺
● 𝓡p   is a set interpreting ⊆ 𝓤 p for each p  ∈ P (predicates)

Models of L∅∅ (empty domains for 𝓘 and 𝓡p): <𝓤, 𝓟, 𝓓, 𝓛>

Intended models: isomorphic to a tree domain in natural interpretation when restricted to L∅∅
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Rogers (1998): Logical account of CFGs

Tree domain (Gorn 1967): non-empty set T  * where for all u,v * and for all i,j :⊆ ℕ ∈ℕ ∈ℕ
● if u·v T, then u T∈ ∈ (“·” denotes concatenation)
● if u·i T and j < i, then u∈ ·j T∈

T = {ε, 0, 00, 1, 10, 11, 110}
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Rogers (1998): Logical account of CFGs

Tree domain (Gorn 1967): non-empty set T  * where for all u,v * and for all i,j :⊆ ℕ ∈ℕ ∈ℕ
● if u·v T, then u T∈ ∈ (“·” denotes concatenation)
● if u·i T and j < i, then u∈ ·j T∈

Natural interpretation of tree domain T: T♮ = <T,  𝓟T, 𝓓T, 𝓛T> where
● 𝓟T = {<u, u·i>  T × T | u  *, i  }∈ ∈ ℕ ∈ ℕ
● 𝓓T = {<u, u·v>  T × T | u,v  *}∈ ∈ ℕ
● 𝓛T = {<u·i·v, u·j·w>  T × T | u,v,w  *, i < j  }∈ ∈ ℕ ∈ ℕ

T = {ε, 0, 00, 1, 10, 11, 110}

𝓟T = {<ε, 0>, <ε, 1>, <0, 00>, <1, 10>, <1, 11>, <11, 110>}

𝓓T = {<ε, ε>, <ε, 0>, <ε, 00>, <ε, 1>, <ε, 10>, <ε, 11>, <ε, 110>,
          <0, 0>, <0, 00>, <1, 1>, <1, 10>, <1, 11>, <1, 110>,
          <00, 00>, <10, 10>, <11, 11>, <11, 110>}

𝓛T = {<0, 1>, <0, 10>, <0, 11>, <0, 110>,
         <10, 11>, <10, 110>}
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Rogers (1998): Logical account of CFGs

Tree domain (Gorn 1967): non-empty set T  * where for all u,v * and for all i,j :⊆ ℕ ∈ℕ ∈ℕ
● if u·v T, then u T∈ ∈ (“·” denotes concatenation)
● if u·i T and j < i, then u∈ ·j T∈

Natural interpretation of tree domain T: T♮  = <T,  𝓟T, 𝓓T, 𝓛T> where
● 𝓟T = {<u, u·i>  T × T | u  *, i  }∈ ∈ ℕ ∈ ℕ
● 𝓓T = {<u, u·v>  T × T | u,v  *}∈ ∈ ℕ
● 𝓛T = {<u·i·v, u·j·w>  T × T | u,v,w  *, i < j  }∈ ∈ ℕ ∈ ℕ

Intended models: isomorphic to a tree domain in natural interpretation when restricted to L∅∅

● Bx = {y | <y, x>  } is finite (i.e. finite path from the root to any node)∈ 𝓓
● Lx = {y | ( z)[<z, y>, <z, x> ∃   and <y, x>  } is finite (i.e. finite number of left siblings)∈ ∈𝓟 𝓛
● allow induction proofs of node depth (AWF–D) and the number of left siblings (AWF–L)
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
● models of L2

K,P that satisfy tree axioms A1–A12 and induction axioms AWF–D and AWF–L

● isomorphic to a tree domain in natural interpretation when restricted to L∅∅

Miller (1999): Definition of interpretation domain for trees in CFG
● IFCFG→C: Σ(CFG) → IDC: σ → Γ such that for all occurrences of A in σ, A V∈ N, the set of 

occurrences of elements of VT dominated by A belongs to Γ
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
● models of L2

K,P that satisfy tree axioms A1–A12 and induction axioms AWF–D and AWF–L

● isomorphic to a tree domain in natural interpretation when restricted to L∅∅

Miller (1999): Definition of interpretation domain for trees in CFG
● IFCFG→C: Σ(CFG) → IDC: σ → Γ such that for all occurrences of A in σ, A V∈ N, the set of 

occurrences of elements of VT dominated by A belongs to Γ

“L2
K,P gives a characterization of the strong generative capacity (SGC) of context-free 

languages, in the sense of Miller (1999), since it provides a logical characterization of the 
properties that are assigned to a string in virtue of the fact that it has a given derivation.”

(Miller & Pullum 2001: 306)
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
● models of L2

K,P that satisfy tree axioms A1–A12 and induction axioms AWF–D and AWF–L

● isomorphic to a tree domain in natural interpretation when restricted to L∅∅

Miller (1999): Definition of interpretation domain for trees in CFG
● IFCFG→C: Σ(CFG) → IDC: σ → Γ such that for all occurrences of A in σ, A V∈ N, the set of 

occurrences of elements of VT dominated by A belongs to Γ

Both use model theory, but for different purposes:
● Rogers defines trees (in CFG) as models of L2

K,P

● Miller gives model-theoretic semantics for trees



SGC and LLM-interpretation
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LLM-states

LLM (𝓜)
● Input: sequence of words(/tokens): w1, …, wn

● Produces contextual encoding + positional encoding for each word: h1, …, hn
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LLM-states

LLM (𝓜)
● Input: sequence of words(/tokens): w1, …, wn

● Produces contextual encoding + positional encoding for each word: h1, …, hn

● Each hi consists of activation values for m nodes: <ai
1, …, ai

m> (concatenated across layers)
● Complete state of  𝓜 for input l = <w1, …, wn>:

S𝓜
I = h1 · … · hn (i.e. concatenation of all contextual encodings)

      = <a1
1, …, a1

m> · … · <an
1, …, an

m> = <a1
1, …, an

m>
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LLM-states

LLM (𝓜)
● Input: sequence of words(/tokens): w1, …, wn

● Produces contextual encoding + positional encoding for each word: h1, …, hn

● Each hi consists of activation values for m nodes: <ai
1, …, ai

m> (concatenated across layers)
● Complete state of  𝓜 for input l = <w1, …, wn>:

S𝓜
I = h1 · … · hn (i.e. concatenation of all contextual encodings)

      = <a1
1, …, a1

m> · … · <an
1, …, an

m> = <a1
1, …, an

m>
● Equivalently, S𝓜

I can be expressed as a set of triplets <i, j, a>, where i indicates the input 
token position, j indicates the -𝓜 node, and a indicates its activation value

● All states of 𝓜 for input I: the power set of S𝓜
I (i.e. all subsets of node activations)



52

LLM-states

Plausible(?) assumptions about modeling phrase-structure in 𝓜:

1. Nodes in phrase-structures are interpreted as model states

2. Relations between nodes are interpreted as relations between interpretations of nodes
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LLM-states

Plausible(?) assumptions about modeling phrase-structure in 𝓜:

1. Nodes in phrase-structures are interpreted as model states

2. Relations between nodes are interpreted as relations between interpretations of nodes

Purpose of assumptions: preventing trivial mappings (Buder-Gröndahl 2023)
● Any sufficiently complex system can be mapped to finite abstract structures (Searle 1992)
● Anything can be mapped to finite-storage computation (Putnam 1988, Sprevak 2018)
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LLMs as models of L∅∅

Models of L∅∅: < , , , > 𝓤 𝓟 𝓓 𝓛 (Rogers 1998)
●  𝓤 is a non-empty domain
●  𝓟 is a relation interpreting  (parent)◁
●  𝓓 is a relation interpreting * (domination)◁
●  𝓛 is a relation interpreting  (left-of order)≺

 𝓜 as a model of L∅∅:
● 𝓤𝓜: -states that enter into at least one of relations {𝓜 𝓟𝓜, 𝓓𝓜, 𝓛𝓜}
● 𝓟𝓜, 𝓓𝓜, 𝓛𝓜: relations between -states that satisfy axioms A1–A12 and A𝓜 WF–D and AWF–L
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency (IDC): set of constituent structures (Miller 1999)
● Occurrences SO: set of pairs <v, i> where v is a vocabulary item and i is a (unique) index
● Constituent structure Γ on SO: set of non-empty subsets of SO

Interpretation function for constituency for CFGs (IFCFG→C) (Miller 1999)
● IFCFG→C: Σ(CFG) → IDC: σ → Γ such that for all occurrences of A in σ, A V∈ N,                           

the set of occurrences of elements of VT dominated by A belongs to Γ

→ Change occurrences of non-terminal or terminal nodes to their -state interpretations𝓜
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency in 𝓜 (ID𝓜
C): set of constituent structures on terminals

● 𝓣𝓜 = {X | X  ∈ 𝓤𝓜 and there is no Y such that <X, Y> ∈𝓓𝓜}
● Constituent structure Γ𝓜 on 𝓣𝓜: set of non-empty subsets of 𝓣𝓜

Interpretation function for constituency for 𝓜-states (IF𝓜→C)
● IF →C𝓜 : 𝓤𝓜 → ID𝓜

C: X → Γ𝓜 such that for all Y {Z | Z ∈ ∉𝓣𝓜 and <X, Z> ∈𝓓𝓜},                               
the set {W | W ∈𝓣𝓜 and <Y, W> ∈𝓓𝓜} belongs to Γ𝓜
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency in 𝓜 (ID𝓜
C): set of constituent structures on terminals

● 𝓣𝓜 = {X | X  ∈ 𝓤𝓜 and there is no Y such that <X, Y> ∈𝓓𝓜}
● Constituent structure Γ𝓜 on 𝓣𝓜: set of non-empty subsets of 𝓣𝓜

Interpretation function for constituency for 𝓜-states (IF𝓜→C)
● IF →C𝓜 : 𝓤𝓜 → ID𝓜

C: X → Γ𝓜 such that for all Y {Z | Z ∈ ∉𝓣𝓜 and <X, Z> ∈𝓓𝓜},                               
the set {W | W ∈𝓣𝓜 and <Y, W> ∈𝓓𝓜} belongs to Γ𝓜

“for all non-terminal nodes Y dominated by X”

“the set of all terminal nodes dominated by Y”
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency in 𝓜 (ID𝓜
C): set of constituent structures on terminals

● 𝓣𝓜 = {X | X  ∈ 𝓤𝓜 and there is no Y such that <X, Y> ∈𝓓𝓜}
● Constituent structure Γ𝓜 on 𝓣𝓜: set of non-empty subsets of 𝓣𝓜

Interpretation function for constituency for 𝓜-states (IF𝓜→C)
● IF →C𝓜 : 𝓤𝓜 → ID𝓜

C: X → Γ𝓜 such that for all Y {Z | Z ∈ ∉𝓣𝓜 and <X, Z> ∈𝓓𝓜},                               
the set {W | W ∈𝓣𝓜 and <Y, W> ∈𝓓𝓜} belongs to Γ𝓜

Summary:
● Miller-type constituent structures for interpreting -states given <𝓜 𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> are sets of  

-states that are interpreted as syntactically terminal – i.e. as dominating nothing𝓜
● This formulation is achieved by replacing linguistic notions in the original version with -states, 𝓜

where <𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> is a model of L∅∅ in line with Rogers (1998)
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Generic account of LLM-interpretation (for CFG)

Interpretation of 𝓜: specification of <𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> + resulting constituents via IF𝓜→C

● <𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> must satisfy tree axioms A1–A12 and induction axioms AWF–D and AWF–L

● Equivalently, <𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> must be isomorphic to a tree domain in natural interpretation
● SGC of : subset of ID𝓜 𝓜

C that function as constituents via IF →C𝓜

<𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜>
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Links to mechanistic interpretation

Behavioral methods:
● Directly relevance only for WGC; but possible indirect relevance for SGC
● Grouping tokens on some behavioral basis, comparing these to Miller-type constituents
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Links to mechanistic interpretation

Behavioral methods:
● Directly relevance only for WGC; but possible indirect relevance for SGC
● Grouping tokens on some behavioral basis, comparing these to Miller-type constituents

Probing: mapping 𝓜-states to linguistic formalisms (Belinkov 2022)
● Theoretical problem: trivially available mappings to all kinds of SDs (Buder-Gröndahl 2023)
● Possible alleviation for constituency: need to satisfy axioms A1–A12 and AWF–D and AWF–L
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Links to mechanistic interpretation

Behavioral methods:
● Directly relevance only for WGC; but possible indirect relevance for SGC
● Grouping tokens on some behavioral basis, comparing these to Miller-type constituents

Probing: mapping 𝓜-states to linguistic formalisms (Belinkov 2022)
● Theoretical problem: trivially available mappings to all kinds of SDs (Buder-Gröndahl 2023)
● Possible alleviation for constituency: need to satisfy axioms A1–A12 and AWF–D and AWF–L

Mechanistic interpretation:
● Identifying -internal cirquits for syntactic tasks → restricting candidates for 𝓜 𝓤𝓜

● Initial challenge: methods like activation patching are based on altering input (Meng et al. 2022); 
how to obtain information on different possible interpretations on the same input?
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Broader relevance for cognitive science

How could there be “trees in the head”?
● Extend  to be a placeholder of any concrete computational system (e.g. a human brain)𝓜
●  𝓜 functions as an intended model L∅∅ iff there is a specification of <𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> that 

satisfies A1–A12 and AWF–D – AWF–L; i.e. is isomorphic to a tree domain in natural interpretation
● SGC of : subset of ID𝓜 𝓜

C that function as constituents via IF →C𝓜

<𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜>
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Broader relevance for cognitive science

How could there be “trees in the head”?
● Extend  to be a placeholder of any concrete computational system (e.g. a human brain)𝓜
●  𝓜 functions as an intended model L∅∅ iff there is a specification of <𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜> that 

satisfies A1–A12 and AWF–D – AWF–L; i.e. is isomorphic to a tree domain in natural interpretation
● SGC of : subset of ID𝓜 𝓜

C that function as constituents via IF →C𝓜

<𝓤𝓜, 𝓟𝓜, 𝓓𝓜, 𝓛𝓜>

Thank you!
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