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Linguistic interpretation of LLMs:
Preliminaries and motivation



Large Language Models (LLMs)

* GPT, Claude, LLaMa, Mistral, BERT...
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What are LLMs?

LLMs, or Large Language Models, are a type of artificial intelligence model designed to
understand, generate, and manipulate human language. They are based on deep learning
techniques, particularly transformer architectures, which allow them to process and generate

text in a coherent and contextually appropriate manner.

Key Features of LLMs:

1. Scale: LLMs are characterized by having a large number of parameters—often in the billions
or even trillions. The scale of these models allows them to capture a wide range of linguistic
patterns, nuances, and knowledge.

2. Pre-training and Fine-tuning:

« Pre-training: LLMs are initially trained on vast amounts of text data, often from diverse
sources such as books, articles, and websites. This stage enables the model to learn
grammar, facts about the world, and even some reasoning abilities.

Fine-tuning: After pre-training, LLMs can be fine-tuned on specific datasets to make

them more effective for particular tasks, such as answering questions, generating
creative writing, or assisting in coding.

Natural Language Understanding (NLU): LLMs are designed to understand the context and
meaning behind the text. They can perform various NLU tasks like sentiment analysis, entity

bl

recognition, and language translation.

Natural Language Generation (NLG): LLMs can generate human-like text based on a given

&

prompt. This capability is used in applications like chatbots, content creation, and
summarization.

Generalization: Due to their extensive training on diverse data, LLMs can generalize across

o

different topics and tasks, making them highly versatile.

Applications of LLMs:
« Conversational Al: Powering chatbots ‘4/* virtual assistants.
« Content Creation: Assisting in writing articles, reports, and creative content.
O Message ChatGPT

ChatGPT can make mistakes. Check important info.



Large Language Models (LLMs)

* GPT, Claude, LLaMa, Mistral, BERT...
* Pre-trained on generic linguistic tasks: e.g. predicting next word, predicting masked word
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Large Language Models (LLMs)

* GPT, Claude, LLaMa, Mistral, BERT...
* Pre-trained on generic linguistic tasks: e.g. predicting next word, predicting masked word

* Large deep neural networks (DNNs), currently mostly Transformers
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Large Language Models (LLMs)

* GPT, Claude, LLaMa, Mistral, BERT...
* Pre-trained on generic linguistic tasks: e.g. predicting next word, predicting masked word

* Large deep neural networks (DNNs), currently mostly Transformers
* Each input word(/token) has an embedding vector combined with positional encoding
* Multi-head self-attention creates contextual encodings for each word across layers
* Contextual encodings are vectors calculated from previous layer’'s embeddings/encodings

The_1 dog_2 chased_3 the_4 cat 5
The_1 dog_2 chased_3 the_4 cat 5
A A A T A

The dog chased the cat



Large Language Models (LLMs)

* Proposed to attain linguistic competence without innate language-specific capacities
(vs. rule-based NLP, generative linguistics)

Finding Universal Grammatical Relations in Multilingual BERT

Emergent linguistic structure in artificial neural
networks trained by self-supervision ) - _ _ _
Ethan A. Chi, John Hewitt, and Christopher D). Manning
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Statistical Learning in Language Modern language models refute
Chomsky’s approach to language

Pablo Contreras Kallens, Ross Deans Kristensen-MclLachlan, Morten H. Christiansen 28
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This article is part of the “Progress & Puzzles of Cognitive Science” letter series.
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Large Language Models (LLMs)

* Proposed to attain linguistic competence without innate language-specific capacities
(vs. rule-based NLP, generative linguistics)

* _...but this is controversial

Home » Minds and Machines » Article

(What) Can Deep Learning Contribute to .
Theoretical Linguistics? The ambiguity of BERTology: what do large

Home » Synthese » Article
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> Open Mind (Camb). 2024 Aug 31:8:1058-1083. doi: 10.1162/opmi_a_00160. eCollection 2024, Testing Al on Ianguage cgmprehensign tasks reveals
The Limitations of Large Language Models for insensitivity to underlying meaning

Understanding Human Language and Cﬂgﬂitiﬂﬂ ittoria Dentella™, Eritz Ginther, Elliot Murphy, Gary Marcus & Evelina Lelvada

Christine Cuskley ', Rebecca Woods 1, Molly Flaherty 2 Scientific Reports 14, Article number: 28083 (2024) | Cite this article
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Model interpretation: motivation

* LLMs are “black boxes”; how do they process language?
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Model interpretation: motivation

* LLMs are “black boxes”; how do they process language?

Linguistic
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Model interpretation: motivation

“Whenever | fire a linguist our system performance improves”

VS.

“Due to the otherwise opaque, black-box nature of [LLMs], researchers have employed
aspects of linguistic theory in order to characterize their behavior. Questions central to syntax
— the study of the hierarchical structure of language — have factored heavily into such work.”

13



Model interpretation: methods

Behavioral techniques (Linzen & Baroni 2021, Chang & Bergen 2024)
* Fine-tuning: additional training of pre-trained model with task-specific data
* Prompting: direct use of pre-trained model with task-specific instructions (prompts)

Now we are going to say which sentences are
acceptable (i.e., grammatical) and which are not.

Pre'tral nl ng : Sentence: Flosa has often seen Marn.

Answer: good

Sentence: Chardon sees often Kuru.
Pre- Answer: bad
training | — Input | p—nrr, "> | Cuiput Sentence: Bob walk.
data a Answer: bad

n]

Sentence: Malevolent floral candy is delicious.
Answer: good

Sentence: The bone chewed the dog.
Answer: good

Sentence: The bone dog the chewed.
Answer: bad

. Sentence: | wonder you ate how much.
Fine- Answer: bad
i _ Input Output
tumng I::’ |::> |:":’ Sentence: The fragrant orangutan sings loudest at
data e Easter.

Answer: good

Fine-tuning:

[l

Sentence: [TEST SENTENCE GOES HERE]
Answer:

(Mahowald 2023)
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Model interpretation: methods

Attention visualization
* Displaying the allocation of attention per contextual encoding of each word
* Shows which words are most relevant for encoding other words
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Model interpretation: methods

Chain-of-thought

* Showing an example multi-step inference with intermediate states in prompt
* LLM starts using similar intermediate states in other multi-step inference tasks

Standard Prompting
( 'Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

~_ Model Output

A: The answer is 27. x

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

~ Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

| answeris 9. ¢/

16



Model interpretation: methods

Looking inside LLMs
* Probing: mapping embeddings to interpretable target labels (e.g. linguistic structures)
* Mechanistic interpretation: isolating computational cirquits via causal intervention
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https://nlp.stanford.edu/~johnhew/structural-probe.html

Model interpretation: theoretical challenges

Competence vs. performance
* LLMs are typically evaluated based on performance: success across input-output tasks
* Linguists often aim to analyze competence: abstract aspects of cognitive architecture

Strong vs. weak generative capacity

* Classification of expressions (based on e.g. acceptability) concerns weak generative capacity:
which strings a grammar produces

* Linguists often aim to analyze strong generative capacity instead: which structural descriptions
a grammar produces

18



Strong generative capacity



Weak vs. strong generative capacity

“Let us say that a grammar weakly generates a set of sentences and that it strongly generates
a set of structural descriptions (...) Suppose that the linguistic theory T provides a class of
grammars G, Gy, ..., where G; weakly generates the language L; and strongly generates the
system of structural descriptions 2. Then the class {L1, L., ...) constitutes the weak generative
capacity of T and the class {21, 25, ...) constitutes the strong generative capacity of T.”

20



Weak vs. strong generative capacity

Gi:
S —- NP VP
NP — N
VP —- V NP
N — John | Mary
V — saw

S
T
NP VP
| il
N V NP
| | I

John saw N
|
Mary

Gzl

S —- VP NP
NP — N
VP - NPV
N — John | Mary
V — saw
S
—
VP NP
T I
NP VWV N

| | |
N saw Mary
|

John

L = {John saw Mary,
Mary saw John}
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Strong equivalence: first attempt

2(G) = set of structural descriptions (SDs) generated by G

G, and G; are strongly equivalent iff Z(G1) = Z(Gz2)

22



Strong equivalence: first attempt

2(G) = set of structural descriptions (SDs) generated by G
G, and G; are strongly equivalent iff Z(G1) = Z(Gz2)

Problem: grammars can be strongly equivalent without having identical SDs
* LTAGs and HPSGs

LCFRSs and sPRCGs

TAGs and monadic linear CFTGs

TAGs and CCGs

MGs and MCFGs

MGs and single-movement normal form MGs

(...)

23



Strong equivalence: second attempt

2(G) = set of structural descriptions (SDs) generated by G

G+ and G; are strongly equivalent iff SDs in 2(G+) are isomorphic to SDs in 2(G.)

24



Strong equivalence: second attempt

2(G) = set of structural descriptions (SDs) generated by G

G+ and G; are strongly equivalent iff SDs in 2(G+) are isomorphic to SDs in 2(G.)

Problem: which relations need to be preserved?

“It Is not altogether clear how to compare the strong generative capacities of linguistically
significant models (...) Although many of these models give sets of labeled phrase structure
trees, there generally is information produced from these trees which differs from model to
model”

25



Plan: build on prior formal definitions of SGC

Miller (1999): generic definition of SGC for linguistic formalisms (phrase-structure, dependency)
Rogers (1998): definition of linguistic formalisms with the SGC of context-free grammar (CFG)

Both use model theory, but in different ways:
* Miller: model-theoretic meta-semantics for linguistic theories/grammars
* Rogers: defining linguistic theories/grammars as models of a logical meta-language

Aim: utilize these for LLM-interpretation

* Put the analyses together to yield an explicit generic account of SGC for CFG
* Replace relevant parts of the account with LLM-friendly notions

26



Miller (1999): Model-theoretic definition of SGC

Interpretation function IF+_,p maps SDs in formalism T to interpretation domain 1D

Interpretation domain for constituency (ID¢): set of constituent structures
* Occurrences So: set of pairs <v, i> where v is a vocabulary item and i is a (unique) index
* Constituent structure I on So: set of non-empty subsets of So

CFG: SD: Constituent structure:
S r={{<John, 1>, <saw, 2>, <Mary, 3>},
S — NP VP e {<saw, 2>, <Mary, 3>},
NP — N NP VP {<John, 1>},
VP — V NP |~|4 ”P {<saw, 2>},
N — John | Mary | | | {<Mary, 3>} }
V — saw John saw N

|
Mary 27



Miller (1999): Model-theoretic definition of SGC

Interpretation function for constituency for CFGs (IFcrc_.c)
* Vn: non-terminal vocabulary

* V. terminal vocabulary

* [Fcrec: 2(CFG) — IDc: 0 — I such that for all occurrences of A in o, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

CFG: SD: Constituent structure:
S = {{<John, 1>, <saw, 2>, <Mary, 3>},
S — NP VP e {<saw, 2>, <Mary, 3>},
NP — N NP VP {<John, 1>},
VP — V NP |~|4 ”P {<saw, 2>},
N — John | Mary | | | {<Mary, 3>} }
V — saw John saw N

|
Mary
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Miller (1999): Model-theoretic definition of SGC

Interpretation function for constituency for CFGs (IFcrc_.c)

* Vn: non-terminal vocabulary
* V. terminal vocabulary

* [Fcrec: 2(CFG) — IDc: 0 — I such that for all occurrences of A in o, A€Vy, the set of

occurrences of elements of Vr dominated by A belongs to I'

S — NP VP
NP - N
VP —- V NP

N v
N — John | Mary | |

FII

CFG: SD:
N
I

V — saw John saw

T

Constituent structure:

= {

{<John, 1>, <saw, 2>, <Mary, 3>},

{<saw, 2>, <Mary, 3>},
{<John, 1>},

{<saw, 2>},

{<Mary, 3>} }
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Miller (1999): Model-theoretic definition of SGC

Interpretation function for constituency for CFGs (IFcrc_.c)
* Vn: non-terminal vocabulary

* V. terminal vocabulary

* [Fcrec: 2(CFG) — IDc: 0 — I such that for all occurrences of A in o, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

CFG: SD: Constituent structure:
8 = {{<John, 1>, <saw, 2>, <Mary, 3>},
S — NP VP — e {<saw, 2>, <Mary, 3>},
NP — N NP VP {<John, 157,
VP — V NP rll ”P {<saw, 2>},
N — John | Mary | | | {<Mary, 3>} }
V — saw John saw N

|
Mary
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Miller (1999): Model-theoretic definition of SGC

SGD of grammar/theory T: subset of an Interpretation Domain that can be represented by T

Subset of IDc that can be represented by CFGs must satisfy the following:

* So belongs to I (i.e. there is a constituent dominating all occurrences: the root non-terminal)
* If E1 and E2 belong to I, and the intersection of E1 and E: is non-empty, then:
1. E1is included in E2; or

2. E> is included in E;

Can be expanded further
* Allowing syncategorematic occurrences: For all <v, i> € So: {<v, i>} €
* Labels: relating each (non-syncategorematic) constituent to a label from Vy

* Linear order: treat indices of occurrences as ordered, disallow discontinuous constituents

31



Rogers (1998): Logical account of CFGs

L2 »: monadic second-order metalanguage for expressing typical syntactic properties
Models of sentences of L% are syntax trees

Proof: ¢ is a sentence of L% iff
models of ¢ = trees generated by some CFG

32



Rogers (1998): Logical account of CFGs

L% p

* individual constant symbols: K, predicate symbols: P

* variables: X = X° U X', where: X° range over individuals and X’ over sets of individuals

* relations: < (parent), <|* (domination), <+ (proper domination), < (left-of order), = (equality)
* logical connectives, quantifiers, and grouping symbols: A, Vv, =, V¥, 3, (), [.]

33



Rogers (1998): Logical account of CFGs

Tree axioms A;":

Al
A2
A3
A4

A5
A6

(3x)(Vy) [x <*y] A7
(Vxy) [(x <*y Ay <*¥X) - x=VY] A8
(Vxy,2) [(x <T*y Ay <*Z) = (x <T* 2)] A9
(Yxy) [x Tyl - (x <+y A A10
(Vz) [x <*z Az <*y) - (z <<*x vy <* 2)])] A1l
(Vx,2) [z <<+ x ~ @y)ly < x]] A12

(Vx,z2) [x +z - @y)x <y Ay <* Z]]

Induction axioms:

Aweo  (VX) [(EX)X(X)] - @E)XCIAVTY) [y <+ x - =X(y)]]

AwrL

(VX) [(EXX(X)] - @EX)X)AVY) [y < x - =X(y)]]

(VXY) X<y o (x Ty Ay TEx) Ay £X]
(Vwxy,z2) [x <y Ax <*w Ay <*z) - w<Z]
(VXY,2) [X<YyAYy<Z) - x<Z]

(V) [Ay) [x <yl - @Fy) [x Iy A(V2) [x Tz - Z £ VY]]
(VX)) [EY) X <y] -@3FY) X<y A(VZ) [X <Z - z £V]]]
(VX)) [EY) X<yl -@FY) X<y A(VZ)[X <z -y £Z]]]

34



Rogers (1998): Logical account of CFGs

Tree axioms A;":

Al
A2
A3
A4

A5
A6

Every tree contains a root non-terminal A7
Domination is anti-symmetric A8
Domination is transitive A9
Domination does not allow a node to fall A10
properly between a node and its parent A1l
Every node except the root has a parent A12

Every non-trivial path from x includes a child of x

Induction axioms:

AWF—D

Awr-L

All nodes are related by domination or order (not both)
Subtrees rooted at ordered nodes are ordered

Order is transitive

Order has a minimum: a parent has a left-most child
Order is discrete in one direction (left-most element)
Order is discrete in other direction (right-most element)

Proper domination is well-founded: there is no infinite sequence of nodes properly dominating each other

Left-of ordering is well-founded: there is no infinite sequence of nodes left of each other

35



Rogers (1998): Logical account of CFGs

Models of L%p: <U, I, P, D, L, R,>pcp, Where:
* U is a non-empty domain

7 is a function from K to U (constants)

P is a relation interpreting < (parent)

D is a relation interpreting <|* (domination)
L is a relation interpreting < (left-of order)

R, < U is a set interpreting p for each p € P (predicates)

Models of Ly (empty domains for 7 and R,): <U, P, D, L>

Intended models: isomorphic to a tree domain in natural interpretation when restricted to Lgg

36



Rogers (1998): Logical account of CFGs

Tree domain : non-empty set T < IN* where for all u,v €IN* and for all i,j €IN:

e ifu-veT, thenueT
e ifuieTandj<i, thenujeT

S E
N e
NP VP 0 1
VN | e
N V NP 00 10 11

| |
N 110

(“-" denotes concatenation)

T={e 0,00, 1, 10, 11, 110}

37



Rogers (1998): Logical account of CFGs

Tree domain : non-empty set T < IN* where for all u,v €IN* and for all i,j €IN:
* ifuveT thenueT (“-” denotes concatenation)
ifuieTandj<i, thenujeT

Natural interpretation of tree domain T: T & = <T, P+, D1, L> where
e Pr={<u,ui>eTxT|uelN* ielN}

* Dr={<u,u-v>e&TxT]|uyveIN}

e Lr={<ui-v,ujw>e TxT|uvweIN*i<jeIN}

S £ T={g 0, 00, 1, 10, 11, 110}
Nﬁp 6"”"‘"‘3 Pr = {<g, 0>, <¢, 1>, <0, 00>, <1, 10>, <1, 11>, <11, 110>}
| | ™~ D+ = {<g, €, <g, 0>, <g, 00>, <g, 1>, <g, 10>, <g, 11>, <g, 110>,
N V NP oD 10 11 <0, 0>, <0, 00>, <1, 1>, <1, 10>, <1, 11>, <1, 110>,
| | <00, 00>, <10, 10>, <11, 11>, <11, 110>}
N 110 Lt ={<0, 1>, <0, 10>, <0, 11>, <0, 110>,

<10, 11>, <10, 110>} 38



Rogers (1998): Logical account of CFGs

Tree domain : non-empty set T < IN* where for all u,v €IN* and for all i,j €IN:
* ifuveT thenueT (“-” denotes concatenation)
ifuieTandj<i, thenujeT

Natural interpretation of tree domain T: Tl = <T, 21, D1, L> where
e Pr={<u,ui>eTxT|uelN* ielN}

* Dr={<u,u-v>e&TxT]|uyveIN}

e Lr={<ui-v,ujw>e TxT|uvweIN*i<jeIN}

Intended models: isomorphic to a tree domain in natural interpretation when restricted to Lgg
* Bx={y | <y, x> € D} is finite (i.e. finite path from the root to any node)
* Ly ={y | (3z)[<z, y>, <z, x> € P and <y, x> € L} is finite (i.e. finite number of left siblings)

* allow induction proofs of node depth (Awr-o) and the number of left siblings (Awr-.) .



Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

40



Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

S I = {{<John, 1>, <saw, 2>, <Mary, 3>},
— T {<saw, 2>, <Mary, 3>},
NlP L {<John, 1>},
N V NP {<saw, 2>},

| | | {<Mary, 3>} }

John saw N
|

Mary
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

£ r* = { {00, 10, 110},
T {10, 110},
0 1 {00},
I e {10},
00 10 11 110} }

|
110
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

£ *={{00, 10, 110}, Dr = {<g, £>, <g, 0>, <g, 00>, <g, 1>, <g, 10>, <¢, 11>, <g, 110>,
T {10, 110}, <0, 0>, <0, 00>, <1, 1>, <1, 10>, <1, 11>, <1, 110>,
0 3 {00}, <00, 00>, <10, 10>, <11, 11>, <11, 110>}
. {10},
00 10 11 110} }

|
110
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG

* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.

* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

0 1
I L
00 10 11
|
110

{00, 10, 110},

{10, 110},
{00},
{10},
110} }

D+ = {<g, >, <g, 0>,

<g, 00>,

<g, 1>,

<g, 10>

<0, 0>, <0, 00>, <1, 1>, <1, 1
<00, 00>, <10, 10>, <11, 11>, <11, 110>}

<g, 11>,

ke, 110>

>, <1, 11>, <1, 110>,
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

£ ™*={{00, 10, 110}, D1 = {<t, £>, <g, 0>, <g, 00>, <g, 1>, <g, 10>, <¢, 11>, <¢, 110>,
T {10, 110}, <0, 0>, <0, 00>, <1, 1>,1, 10> /<1, 11>,|<1, 110>,
0 {00}, <00, 00>, <10, 10>, <11, 11>, <11, 110>}
. {10},
00 10 11 110} }

|
110
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

“L%«p gives a characterization of the strong generative capacity (SGC) of context-free
languages, in the sense of Miller (1999), since it provides a logical characterization of the
properties that are assigned to a string in virtue of the fact that it has a given derivation.”
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Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* isomorphic to a tree domain in natural interpretation when restricted to Ly s

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A€Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

Both use model theory, but for different purposes:
* Rogers defines trees (in CFG) as models of L%p
* Miller gives model-theoretic semantics for trees
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SGC and LLM-interpretation



LLM-states

LLM (M)
* Input: sequence of words(/tokens): wy, ..., Wy
* Produces contextual encoding + positional encoding for each word: hy, ..., h,

cat 5

T

The dog chased the cat

49



LLM-states

LLM (M)
* Input: sequence of words(/tokens): wy, ..., Wy
* Produces contextual encoding + positional encoding for each word: hy, ..., h,
* Each h; consists of activation values for m nodes: <a'y, ..., an> (concatenated across layers)
* Complete state of M for input | = <wjq, ..., Wy>:
SM =hq- ... - hy (i.e. concatenation of all contextual encodings)

=<aly,....,aw>-...-<am, ...,a"w>=<aly, ..., a">

50



LLM-states

LLM (M)
* Input: sequence of words(/tokens): wy, ..., Wy
* Produces contextual encoding + positional encoding for each word: hy, ..., h,
* Each h; consists of activation values for m nodes: <a'y, ..., an> (concatenated across layers)
* Complete state of M for input | = <wjq, ..., Wy>:
SM =hq- ... - hy (i.e. concatenation of all contextual encodings)

=<aly,....,aw>-...-<am, ...,a"w>=<aly, ..., a">

Equivalently, S™, can be expressed as a set of triplets <i, j, a>, where i indicates the input
token position, j indicates the M'-node, and a indicates its activation value

All states of M for input I: the power set of S, (i.e. all subsets of node activations)
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LLM-states

Plausible(?) assumptions about modeling phrase-structure in M:
1. Nodes in phrase-structures are interpreted as model states
2. Relations between nodes are interpreted as relations between interpretations of nodes
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LLM-states

Plausible(?) assumptions about modeling phrase-structure in M:
1. Nodes in phrase-structures are interpreted as model states
2. Relations between nodes are interpreted as relations between interpretations of nodes

Purpose of assumptions: preventing trivial mappings
* Any sufficiently complex system can be mapped to finite abstract structures

* Anything can be mapped to finite-storage computation
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LLMs as models of Ly 5

Models of Lgs: <U, P, D, L>

* U is a non-empty domain

* P is arelation interpreting <l (parent)

* D is a relation interpreting <* (domination)
* L is a relation interpreting < (left-of order)

M as a model of Lyg:
* U™:. M-states that enter into at least one of relations {P*, DM, £}
o PM DM LM:relations between M-states that satisfy axioms A1-A12 and Awr-o and Awr-L
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency (ID¢): set of constituent structures
* Occurrences So: set of pairs <v, i> where v is a vocabulary item and i is a (unique) index
* Constituent structure I on So: set of non-empty subsets of So

Interpretation function for constituency for CFGs (IFcrc_.c)

* IFcreoc: 2(CFG) — IDc: 0 — I such that for all occurrences of Ain o, A €Vjy,
the set of occurrences of elements of Vr dominated by A belongs to I

— Change occurrences of non-terminal or terminal nodes to their M'-state interpretations
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency in M (ID*¢): set of constituent structures on terminals
e TM ={X| X € U™ and there is no Y such that <X, Y> €D}
* Constituent structure '™ on 777*: set of non-empty subsets of 7™

Interpretation function for constituency for M-states (IF._c)

* IFaroc: UM — IDMc: X > ™M suchthatforall Y €{Z | Z ¢T* and <X, Z> €D},
the set {W | W €7 and <Y, W> €D} belongs to '™
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency in M (ID*¢): set of constituent structures on terminals
e TM ={X| X € U™ and there is no Y such that <X, Y> €D}
* Constituent structure '™ on 777*: set of non-empty subsets of 7™

Interpretation function for constituency for M-states (IF._c)

* IFac: U™ — IDMc: X — ™ such thatlfor all Y €{Z | Z €T and <X, Z> €D},
the set {W | W €T and <Y, W> €D™}|belongs to T

A
“for all non-terminal nodes Y dominated by X”

“the set of all terminal nodes dominated by Y”
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Interpretation domain for constituency in LLMs

Interpretation domain for constituency in M (ID*¢): set of constituent structures on terminals
e TM ={X| X € U™ and there is no Y such that <X, Y> €D}
* Constituent structure '™ on 777*: set of non-empty subsets of 7™

Interpretation function for constituency for M-states (IF._c)

* IFaroc: UM — IDMc: X > ™M suchthatforall Y €{Z | Z ¢T* and <X, Z> €D},
the set {W | W €7 and <Y, W> €D} belongs to '™

Summary:

* Miller-type constituent structures for interpreting M-states given <u*, P, D™ LM> are sets of
M -states that are interpreted as syntactically terminal — i.e. as dominating nothing

* This formulation is achieved by replacing linguistic notions in the original version with M-states,

where <U™, PM DM LM>is a model of Lgg in line with Rogers (1998)
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Generic account of LLM-interpretation (for CFG)

Interpretation of M': specification of <UM, P, D™, L> + resulting constituents via IF ¢
o <UM, PM, DM, L7> must satisfy tree axioms A1-A12 and induction axioms Awr_o and Awr-.
* Equivalently, <u*, P, DM, LM> must be isomorphic to a tree domain in natural interpretation

* SGC of M': subset of ID* that function as constituents via IF ¢

-

0.13452 0.34562 0.65387 0.07501 0.10053] <U™, P, D™, LM*>
0.06753 0.28746 0.98463 0.44763 0.00562 > NP VP
0.34672 0.20056 0.94461 0.37004 0.02204 V/\NP

~ I
& G—v
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Links to mechanistic interpretation

Behavioral methods:
* Directly relevance only for WGC; but possible indirect relevance for SGC

* Grouping tokens on some behavioral basis, comparing these to Miller-type constituents
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Links to mechanistic interpretation

Behavioral methods:
* Directly relevance only for WGC; but possible indirect relevance for SGC
* Grouping tokens on some behavioral basis, comparing these to Miller-type constituents

Probing: mapping M -states to linguistic formalisms
* Theoretical problem: trivially available mappings to all kinds of SDs
* Possible alleviation for constituency: need to satisfy axioms A1-A12 and Awr-o and Awr-.
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Links to mechanistic interpretation

Behavioral methods:
* Directly relevance only for WGC; but possible indirect relevance for SGC
* Grouping tokens on some behavioral basis, comparing these to Miller-type constituents

Probing: mapping M -states to linguistic formalisms
* Theoretical problem: trivially available mappings to all kinds of SDs
* Possible alleviation for constituency: need to satisfy axioms A1-A12 and Awr-o and Awr-.

Mechanistic interpretation:
* Identifying M-internal cirquits for syntactic tasks — restricting candidates for U™

* Initial challenge: methods like activation patching are based on altering input
how to obtain information on different possible interpretations on the same input?
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Broader relevance for cognitive science

How could there be “trees in the head”?
* Extend M to be a placeholder of any concrete computational system (e.g. a human brain)

* M functions as an intended model Lgg iff there is a specification of <U, P, DM, LM> that
satisfies A1-A12 and Awr-p — Awr-(; i.€. is isomorphic to a tree domain in natural interpretation

* SGC of M': subset of ID* that function as constituents via IF ¢

<U, P, D LM> e
» NP VP

P
Vv NP

63



Broader relevance for cognitive science

How could there be “trees in the head”?
* Extend M to be a placeholder of any concrete computational system (e.g. a human brain)

* M functions as an intended model Lgg iff there is a specification of <U, P, DM, LM> that
satisfies A1-A12 and Awr-p — Awr-(; i.€. is isomorphic to a tree domain in natural interpretation

* SGC of M': subset of ID* that function as constituents via IF ¢

<U, P, D LM> e
» NP VP

P
Vv NP

Thank you!
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