A model-theoretic approach to
evaluating the strong generative

capacity of large language models

Tommi Buder-Grondahl



Introducing myself

Cognitive scientist working at the intersection of linguistics, philosophy, and Al
Postdoctoral researcher at the Department of Digital Humanities of the University of Helsinki

Education
' i - - t . dahl@helsinki.fi
» DSc in computer science (Aalto University, 2021) hﬁ[gg}/gr?nnmﬁbg% et

* PhD in cognitive science (University of Helsinki, 2023) https://bsky.app/profile/tommibg.bsky.social

Current/forthcoming work

* Pl of the project Linguistic Interpretation of Leading Techniques in Natural Language Processing,
funded by the Research Council of Finland (2022—2025)

* Next fall (2025), starting as a postdoc on the project Al for Reinforcing Democracy (AlDemoc),
led by Anna-Mari Wallenberg (Uni. Helsinki) and funded by the Strategic Research Council of the
Research Council of Finland (2025-2030)


mailto:tommi.grondahl@helsinki.fi
https://tommi-bg.fi/
https://bsky.app/profile/tommibg.bsky.social

Linguistic interpretation of LLMs: motivation
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Linguistic interpretation of LLMs: challenges

Competence vs. performance
* LLMs are typically evaluated based on performance: success across input-output tasks
* Linguists often aim to analyze competence: abstract aspects of cognitive architecture

Strong vs. weak generative capacity

* Classification of expressions (based on e.g. acceptability) concerns weak generative capacity:
which strings a grammar produces

* Linguists often aim to analyze strong generative capacity instead: which structural descriptions
a grammar produces



Weak vs. strong generative capacity

“Let us say that a grammar weakly generates a set of sentences and that it strongly generates
a set of structural descriptions (...) Suppose that the linguistic theory T provides a class of
grammars G, Gy, ..., where G; weakly generates the language L; and strongly generates the
system of structural descriptions 2. Then the class {L1, L., ...) constitutes the weak generative
capacity of T and the class {21, 25, ...) constitutes the strong generative capacity of T.”



Strong equivalence: first attempt

2(G) = set of structural descriptions (SDs) generated by G
G, and G; are strongly equivalent iff 2(G1) = Z(Gz)

Problem: grammars can be strongly equivalent without having identical SDs
* LTAGs and HPSGs

LCFRSs and sPRCGs

TAGs and monadic linear CFTGs

TAGs and CCGs

MGs and MCFGs

MGs and single-movement normal form MGs

(...)



Strong equivalence: second attempt

2(G) = set of structural descriptions (SDs) generated by G

G+ and G; are strongly equivalent iff SDs in 2(G+) are isomorphic to SDs in 2(Gz)

Problem: which relations need to be preserved?

“It Is not altogether clear how to compare the strong generative capacities of linguistically
significant models (...) Although many of these models give sets of labeled phrase structure
trees, there generally is information produced from these trees which differs from model to
model”



Plan: build on prior formal definitions of SGC

Miller (1999): generic definition of SGC for linguistic formalisms (phrase-structure, dependency)
Rogers (1998): definition of linguistic formalisms with the SGC of context-free grammar (CFG)

Both use model theory, but in different ways:
* Miller: model-theoretic meta-semantics for linguistic theories/grammars
* Rogers: defining linguistic theories/grammars as models of a logical meta-language

Aim: utilize these for LLM-interpretation
* Put the analyses together to yield an explicit generic account of SGC for CFG
* Replace relevant parts of the account with LLM-friendly notions



Miller (1999): Model-theoretic definition of SGC

Interpretation function IF+_,p maps SDs in formalism T to interpretation domain |D

Interpretation domain for constituency (ID¢): set of constituent structures
* Occurrences So: set of pairs <v, i> where v is a vocabulary item and i is a (unique) index
* Constituent structure I on So: set of non-empty subsets of So

CFG: SD: Constituent structure:
S = {{<John, 1>, <saw, 2>, <Mary, 3>},
S — NP VP e {<saw, 2>, <Mary, 3>},
NP — N NP VP {<John, 1>},
VP — V NP |~|4 ”P {<saw, 2>},
N — John | Mary | | | {<Mary, 3>} }
V — saw John saw N

|
Mary



Miller (1999): Model-theoretic definition of SGC

Interpretation function for constituency for CFGs (IFcrc_.c)
* Vn: non-terminal vocabulary

* V. terminal vocabulary

* [Fcrec: 2(CFG) — IDc: 0 — T such that for all occurrences of Ain g, A eVy, the set of
occurrences of elements of Vr dominated by A belongs to I'

CFG: SD: Constituent structure:
S = {{<John, 1>, <saw, 2>, <Mary, 3>},
S — NP VP e {<saw, 2>, <Mary, 3>},
NP — N NP VP {<John, 1>},
VP — V NP |~|4 ”P {<saw, 2>},
N — John | Mary | | | {<Mary, 3>} }
V — saw John saw N

|
Mary
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Miller (1999): Model-theoretic definition of SGC

Interpretation function for constituency for CFGs (IFcrc_.c)

* Vn: non-terminal vocabulary
* V. terminal vocabulary

* [Fcrec: 2(CFG) — IDc: 0 — T such that for all occurrences of Ain g, A eVy, the set of

occurrences of elements of Vr dominated by A belongs to I'

S — NP VP
NP - N
VP —- V NP

N v
N — John | Mary | |

FII

CFG: SD:
N
I

V — saw John saw

T

Constituent structure:

= {

{<John, 1>, <saw, 2>, <Mary, 3>},

{<saw, 2>, <Mary, 3>},
{<John, 1>},

{<saw, 2>},

{<Mary, 3>} }
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Miller (1999): Model-theoretic definition of SGC

Interpretation function for constituency for CFGs (IFcrc_.c)
* Vn: non-terminal vocabulary

* V. terminal vocabulary

* [Fcrec: 2(CFG) — IDc: 0 — T such that for all occurrences of Ain g, A eVy, the set of
occurrences of elements of Vr dominated by A belongs to I'

CFG: SD: Constituent structure:
8 = {{<John, 1>, <saw, 2>, <Mary, 3>},
S — NP VP — e {<saw, 2>, <Mary, 3>},
NP — N NP VP {<John, 15},
VP — V NP rll ”P {<saw, 2>},
N — John | Mary | | | {<Mary, 3>} }
V — saw John saw N

|
Mary
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Miller (1999): Model-theoretic definition of SGC

SGD of grammar/theory T: subset of an Interpretation Domain that can be represented by T

Subset of IDc that can be represented by CFGs must satisfy the following:

* So belongs to I (i.e. there is a constituent dominating all occurrences: the root non-terminal)
* If E1 and E:2 belong to I, and the intersection of E1 and E: is non-empty, then:
1. E1is included in E2; or

2. E> is included in E;

Can be expanded further
* Allowing syncategorematic occurrences: For all <v, i> € So: {<v, i>} € I
* Labels: relating each (non-syncategorematic) constituent to a label from Vy

* Linear order: treat indices of occurrences as ordered, disallow discontinuous constituents

13



Rogers (1998): Logical account of CFGs

L2 »: monadic second-order metalanguage for expressing typical syntactic properties
Models of sentences of L% are syntax trees

Proof: ¢ is a sentence of L iff
models of ¢ = trees generated by some CFG

14



Rogers (1998): Logical account of CFGs

L2K,P

* individual constant symbols: K, predicate symbols: P

* variables: X = X° U X', where: X° range over individuals and X' over sets of individuals

* relations: <] (parent), <t* (domination), <+ (proper domination), < (left-of order), = (equality)
* |logical connectives, quantifiers, and grouping symbols: A, v, 1, Vv, 3, (,), []

15



Rogers (1998): Logical account of CFGs

Tree axioms A;":

Al
A2
A3
A4

A5
A6

@x)(vy) [x <yl
(WXY) [(X <"y A y<TEX) - X=Y]
(VX,y,2) [(X <"y Ay <¥Z) - (X <" 2)]

(VX,y) [X<1y] - (X <H+y A
(VZ) [Xx<FZ AZ<T'Y) - (z<T'Xx vy < 2)])]

(Vx,2) [z <+ x ~ @y)ly <X]]
(VX,2) [x <+ z - @y)x <y Ay <" Z]]

Induction axioms:

Awro  (VX) [EX)[X(X)] — @X)[X(X) A (vy) [y <+ X - =X(y)]]

AwrL

(VX) [@)XX)] - @)IXX) A (vy) [y <X - =X(Y)]]

A7
A8
A9
A10
All
Al12

(VXY) X <Y o (X <TY A -y <FFX) Ay LX]
(VW,X,Y,Z) [X <Yy A X<*W A Yy<*Z) > w<Z]
(VX,Y,2) [X <y A y<Z) - x<Z]

(vx) [Ay) Xyl - @y) Xy A(v2) [x <]z - z LY]]]
(vx) [Ay) X <Yyl -@y) X <y A(vZ) [x <Z - Z L Y]]
(vx) [Ay) X <Yyl -@y) X<y A(vZ) [x <z - y L Z]]]
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Rogers (1998): Logical account of CFGs

Tree axioms A;":

Al
A2
A3
A4

A5
A6

Every tree contains a root non-terminal A7
Domination is anti-symmetric A8
Domination is transitive A9
Domination does not allow a node to fall A10
properly between a node and its parent A1l
Every node except the root has a parent A12

Every non-trivial path from x includes a child of x

Induction axioms:

AWF—D

AwrL

All nodes are related by domination or order (not both)
Subtrees rooted at ordered nodes are ordered

Order is transitive

Order has a minimum: a parent has a left-most child
Order is discrete in one direction (left-most element)
Order is discrete in other direction (right-most element)

Proper domination is well-founded: there is no infinite sequence of nodes properly dominating each other

Left-of ordering is well-founded: there is no infinite sequence of nodes left of each other

17



Rogers (1998): Logical account of CFGs

Models of L%p: <U/, Z, P, D, L, Rp>pcp, Where:

* U/ is a non-empty domain

7 is a function from K to U/ (constants)

P is a relation interpreting <] (parent)

D is a relation interpreting <* (domination)

L is a relation interpreting < (left-of order)

RpC U is a set interpreting p for each p € P (predicates)

Models of Loz (empty domains for 7 and R,): <u, P, D, £>

Intended models: isomorphic to a tree domain in natural interpretation when restricted to Lo

18



Rogers (1998): Logical account of CFGs

Tree domain : non-empty set T € N* where for all u,v € N* and for all i,j € N:
* ifuv €T, thenu €T (“-” denotes concatenation)
ifuieTandj<i thenuj eT

Natural interpretation of tree domain T: Ty = <T, Pr, D+, Lr> where
e Pr={<u,ui>eTxT|ueN*ieN}
* Dr={<u,uv>eTxT|uv e N*}

* Lr={<uiv,ujw> e TxT|uvw e N* i<jeN}

S £ T={g 0, 00, 1, 10, 11, 110}

NﬁP [;”"""“‘"i Pr = {<g, 0>, <¢, 1>, <0, 00>, <1, 10>, <1, 11>, <11, 110>}
AN [ e Dr = {<g, £>, <g, 0>, <g, 00>, <g, 1>, <g, 10>, <¢, 11>, <¢, 110>,
N V NP oD 10 11 <0, 0>, <0, 00>, <1, 1>, <1, 10>, <1, 11>, <1, 110>,

| | <00, 00>, <10, 10>, <11, 11>, <11, 110>}
N 110 Lr ={<0, 1>, <0, 10>, <0, 11>, <0, 110>,

<10, 11>, <10, 110>} 19



Rogers (1998): Logical account of CFGs

Tree domain : non-empty set T € N* where for all u,v € N* and for all i,j € N:
* ifuv €T, thenu €T (“-” denotes concatenation)
ifuieTandj<i thenuj eT

Natural interpretation of tree domain T: Ty = <T, Pr, D+, Lr> where
e Pr={<u,ui> eTxT|ueN*ieN}

* Dr={<u,uv>eTxT|uv e N*}

* Lr={<uiv,ujw> e TxT|uvw e N* i<jeN}

Intended models: isomorphic to a tree domain in natural interpretation when restricted to Lz
* Bx={y | <y, x> € D} is finite (i.e. finite path from the root to any node)
* Ly ={y| (3z)[<z, y>, <z, x> € P and <y, x> € L} is finite (i.e. finite number of left siblings)

* allow induction proofs of node depth (Awr-o) and the number of left siblings (Awr-.) "



Comparing Rogers (1998) + Miller (1999)

Rogers (1998): Definition of trees in CFG
* models of L%p that satisfy tree axioms A1-A12 and induction axioms Awr-p and Awr-L
* isomorphic to a tree domain in natural interpretation when restricted to Lo »

Miller (1999): Definition of interpretation domain for trees in CFG

* |Fcre—c: 2(CFG) — IDc: 0 — T such that for all occurrences of Ain g, A e Vy, the set of
occurrences of elements of Vr dominated by A belongs to I'

Both use model theory, but for different purposes:
* Rogers defines trees (in CFG) as models of L%p
* Miller gives model-theoretic semantics for trees

21



LLM-states

LLM (M)
* Input: sequence of words(/tokens): wy, ..., Wy
* Produces contextual encoding + positional encoding for each word: hy, ..., h,
* Each h; consists of activation values for m nodes: <a'y, ..., an> (concatenated across layers)
* Complete state of M for input | = <wy, ..., Wp>:
SM = <aly, ..., a"n> (i.e. concatenation of all contextual encodings)

Equivalently, S™ can be expressed as a set of triplets <i, j, a>, where i indicates the input
token position, j indicates the M-node, and a indicates its activation value

All states of M for input I: the power set of SV (i.e. all subsets of node activations)

22



LLM-states

Plausible(?) assumptions about modeling phrase-structure in M:
1. Nodes in phrase-structures are interpreted as model states
2. Relations between nodes are interpreted as relations between interpretations of nodes

Purpose of assumptions: preventing trivial mappings
* Any sufficiently complex system can be mapped to finite abstract structures

* Anything can be mapped to finite-storage computation

23



LLMs as models of L

Models of Loo: <U, P, D, L>

* U/ is a non-empty domain

* Pis a relation interpreting <] (parent)

* Dis a relation interpreting <* (domination)
* Lis arelation interpreting < (left-of order)

M as a model of Lgy:
* UM:. M-states that enter into at least one of relations {P", DV, £}
o PM DM LM relations between M-states that satisfy axioms A1-A12 and Awro and Awr—.

24



Interpretation domain for constituency in LLMs

Interpretation domain for constituency (ID¢): set of constituent structures
* Occurrences So: set of pairs <v, i> where v is a vocabulary item and i is a (unique) index
* Constituent structure I on So: set of non-empty subsets of So

Interpretation function for constituency for CFGs (IFcrc_.c)

* IFcre—c: Z(CFG) — IDc: 0 — I such that for all occurrences of Ain g, A € Vy,
the set of occurrences of elements of Vr dominated by A belongs to I

— Change occurrences of non-terminal or terminal nodes to their M-state interpretations

25



Interpretation domain for constituency in LLMs

Interpretation domain for constituency in M (ID*¢): set of constituent structures on terminals
e TM={X| X € UMand there is no Y such that <X, Y> € DV}
* Constituent structure ' on 7*: set of non-empty subsets of 7

Interpretation function for constituency for M-states (IF ...c)

* IFyoc: UM — IDMe: X > ™ suchthatforall Y €e{Z|Z ¢ T™and <X, Z> € DM},
the set (W | W e 7Mand <Y, W> e D"} belongs to '™

26



Interpretation domain for constituency in LLMs

Interpretation domain for constituency in M (ID*¢): set of constituent structures on terminals
e TM={X| X € UMand there is no Y such that <X, Y> € DV}
* Constituent structure ' on 7*: set of non-empty subsets of 7

Interpretation function for constituency for M-states (IF ...c)

* IFyc: UM — IDMe: X — M such thatffor allY €{Z | Z ¢ 7™ and <X, Z> € D'},
the set {W | W €7 and <Y, W> € D"} belongs to T

A
“for all non-terminal nodes Y dominated by X”

“the set of all terminal nodes dominated by Y”

27



Generic account of LLM-interpretation (for CFG)

Interpretation of M: specification of <¢/M, PV, DM, £V> + resulting constituents via IF...c
o <yM, PM, DM £M> must satisfy tree axioms A1-A12 and induction axioms Awr-o and Awe-.
* Equivalently, <t/M, PM, DM, £M> must be isomorphic to a tree domain in natural interpretation

* SGC of M: subset of IDV¢ that function as constituents via IF ¢

=
<M73M M
ul 1DM1£> /\

0.13452 0.34562 0.65387 0.07501 0.10053

0.06753 0.28746 0.98463 0.44763 0.00562 P NP VP

0.34672 0.20056 0.94461 0.37004 0.02204 o
\ NP

- I
G a____
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Links to empirical work on LLM-interpretation

Behavioral methods:
* Directly relevance only for WGC; but possible indirect relevance for SGC
* Grouping tokens on some behavioral basis, comparing these to Miller-type constituents

Probing: mapping M-states to linguistic formalisms
* Theoretical problem: trivially available mappings to all kinds of SDs
* Possible alleviation for constituency: need to satisfy axioms A1-A12 and Awr-p and Awr-_L

Mechanistic interpretation:
* Identifying M-internal cirquits for syntactic tasks — restricting candidates for /"

* Initial challenge: methods like activation patching are based on altering input
how to obtain information on different possible interpretations on the same input?

29



Broader relevance for cognitive science

How could there be “trees in the head”?
* Extend M to be a placeholder of any concrete computational system (e.g. a human brain)

* M functions as an intended model Lz iff there is a specification of <t/M, PV, DM, £M> that satisfies
A1-A12 and Awr-o — Awe-L; i.€. is isomorphic to a tree domain in natural interpretation

* SGC of M: subset of ID¢ that function as constituents via IF v.c

30



Broader relevance for cognitive science

How could there be “trees in the head”?
* Extend M to be a placeholder of any concrete computational system (e.g. a human brain)

* M functions as an intended model Lz iff there is a specification of <t/M, PV, DM, £M> that satisfies
A1-A12 and Awr-o — Awe-L; i.€. is isomorphic to a tree domain in natural interpretation

* SGC of M: subset of ID¢ that function as constituents via IF v.c

Thank you!
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