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Large Language Models (LLMs)

* BERT, GPT, Claude, LLaMa, Mistral...
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What are LLMs?

LLMs, or Large Language Models, are a type of artificial intelligence model designed to
understand, generate, and manipulate human language. They are based on deep learning
techniques, particularly transformer architectures, which allow them to process and generate

text in a coherent and contextually appropriate manner.

Key Features of LLMs:

. Scale: LLMs are characterized by having a large number of parameters—often in the billions

or even trillions. The scale of these models allows them to capture a wide range of linguistic
patterns, nuances, and knowledge.
2. Pre-training and Fine-tuning:
« Pre-training: LLMs are initially trained on vast amounts of text data, often from diverse

sources such as books, articles, and websites. This stage enables the model to learn
grammar, facts about the world, and even some reasoning abilities.

Fine-tuning: After pre-training, LLMs can be fine-tuned on specific datasets to make
them more effective for particular tasks, such as answering questions, generating
creative writing, or assisting in coding.

Natural Language Understanding (NLU): LLMs are designed to understand the context and

meaning behind the text. They can perform various NLU tasks like sentiment analysis, entity

W

recognition, and language translation.

&

Natural Language Generation (NLG): LLMs can generate human-like text based on a given
prompt. This capability is used in applications like chatbots, content creation, and

summarization.

Generalization: Due to their extensive training on diverse data, LLMs can generalize across

L

different topics and tasks, making them highly versatile.

Applications of LLMs:
« Conversational Al: Powering chatbots 'd/* virtual assistants.
« Content Creation: Assisting in writing articles, reports, and creative content.
O Message ChatGPT

ChatGPT can make mistakes. Check important info.



Large Language Models (LLMs)

* BERT, GPT, Claude, LLaMa, Mistral...
* Pre-trained on generic linguistic tasks: predicting masked work, predicting upcoming text, ...
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Large Language Models (LLMs)

* BERT, GPT, Claude, LLaMa, Mistral...
* Pre-trained on generic linguistic tasks: predicting masked work, predicting upcoming text, ...

* Large deep neural networks (DNNs), currently mostly Transformers
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Large Language Models (LLMs)

BERT, GPT, Claude, LLaMa, Mistral...

Large deep neural networks (DNNs), currently mostly Transformers

Proposed to attain linguistic competence without innate language-specific capacities
(vs. rule-based NLP, generative linguistics)

networks trained by self-supervision
Ethan A. Chi, John Hewitt, and Christopher D. Manning

i ing®! 8 a ittd 1 a b %
Christopher D. Manning . Kevin Clark?, John Hewitt*®, Urvashi Khandelwal®, and Omer Levy Department of Computer Science

Stanford University
{ethanchi, johnhew,manning}@cs.stanford.edu

Large Language Models Demonstrate the Potential of

Statistical Learning in Language Modern language models refute

Chomsky’s approach to language

Pablo Contreras Kallens, Ross Deans Kristensen-McLachlan, Morten H. Christiansen &
Steven T. Piantadosi®®

First published: 25 February 2023 | https://doi.org/10.1111/cogs.13256 | Citations: 2 2UC Berkeley, Psychology PHelen Wills Neuroscience Institute

This article is part of the “Progress & Puzzles of Cognitive Science” letter series.

Pre-trained on generic linguistic tasks: predicting masked work, predicting upcoming text, ...



Model interpretation

* LLMs are “black boxes”; how do they process language?
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Model interpretation

* LLMs are “black boxes”; how do they process language?
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Model interpretation

* Prevalent claim: LLMs have internal linguistic representations

“Our goal is to design a simple method for testing whether a neural network embeds each
sentence’s dependency parse tree in its contextual word representations — a structural
hypothesis.” (Hewitt & Manning, 2019, 4129-4130)

“Investigating how BERT represents syntax, we describe evidence that attention matrices
contain grammatical representations.” (Coenen et al., 2019, 8592)

“In this work, we investigate the linguistic structure implicitly learned by BERT’s
representations.” (Jawahar et al., 2019, 3652)

“Another theme that emerges in several studies is the hierarchical nature of the learned
representations.” (Belinkov & Glass, 2019, 52)

“We propose a methodology and offer the first detailed analysis of BERT’s capacity to cap-
ture different kinds of linguistic information by encoding it in its self-attention

weights.” (Kovaleva et al., 2019, 4365)

“We find that the model represents the steps of the traditional NLP pipeline in an
interpretable and localizable way, and that the regions responsible for each step appear
in the expected sequence: POS tagging, parsing, NER, semantic roles, then coreference.”
(Tenney, Das, & Pavlick, 2019, 4593)




Model interpretation

* Problems:
1. What does this really mean?
2. How to determine what kinds of representations (if any) LLMs have?

* Historically, this is not how connectionist language models have usually been interpreted.
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Eliminative vs. implementational connectionism

* Eliminative connectionism:

“(...) a reasonable account of the acquisition of past tense can be provided without
recourse (...) to the notion of a ‘rule’ as anything more than a description of the language.
(...) The child need not figure out what the rules are, nor even that there are rules.”

* Implementational connectionism:

“(...) the way the overall output of one network feeds into the input of another would be
isomorphic to the structure of the symbol manipulations captured in the statements of rules.”

11



Eliminative vs. implementational connectionism

* Eliminative connectionism:

* Implementational connectionism:

0.13452 0.34562 0.65387 0.07501 0.10053
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Eliminative vs. implementational connectionism

“Whenever | fire a linguist our system performance improves” (attributed to Jelinek 1988)

Language Resources and Evaluation (2005) 39: 25-34 © Springer 2005
DOI 10.1007/s10579-005-2693-4

Some of my Best Friends are Linguists

FREDERICK JELINEK

Department of electrical and Computer Engineering, Johns Hopkins University, Barton Hall
320, Baltimore, MD 21218, USA

E-mail: jelinek @ jhu.edu
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Eliminative vs. implementational connectionism

“Whenever | fire a linguist our system performance improves”

“Due to the otherwise opaque, black-box nature of [LLMs], researchers have employed
aspects of linguistic theory in order to characterize their behavior. Questions central to syntax

— the study of the hierarchical structure of language — have factored heavily into such work.

Language Resources and Evaluation (2005) 39: 25-34 © Springer 2005
DOI 10.1007/s10579-005-2693-4

Some of my Best Friends are Linguists

FREDERICK JELINEK

Department of electrical and Computer Engineering, Johns Hopkins University, Barton Hall
320, Baltimore, MD 21218, USA

E-mail: jelinek @ jhu.edu

7™ 2 Conceptual Analysis
& frontiers | Frontiers in Artificial Intelligence 17 October 2022
10.3389/frai.2022.796788

e Schrddinger’s tree—On syntax
and neural language models

Sebastian Pado, . . .
Universit y of Stuttgart, German y Artur Kulmizev'* and Joakim Nivre!?

Computational Linguistics Group, Department of Linguistics and Philology, Uppsala University,

WilliarmSchuler; Uppsala, Sweden, ?RISE Research Institutes of Sweden, Kista, Sweden

The Ohio State University,
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Eliminative vs. implementational connectionism

* There has been a quick shift to implementational connectionism in the LLM-literature
* |s this justified, and how does this impact the linguistic ramifications of LLMs?
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Papers

Tommi Buder-Grondahl. The ambiguity of BERTology: What do large language models represent?
Synthese 203: 15, 2023.

Tommi Buder-Grondahl. What does parameter-free probing really uncover? Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers): 327-336,

2024.
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Ambiguity of BERTology

* Meta-theoretical problem: what does “representation of X” mean?
1. Content reading: system-internal vehicle that carries information about content X
2. Vehicle reading: system-internal vehicle that instantiates X

17



Ambiguity of BERTology

* Meta-theoretical problem: what does “representation of X” mean?
1. Content reading: system-internal vehicle that carries information about content X
2. Vehicle reading: system-internal vehicle that instantiates X

* Both have problems in interpreting claims that LLMs contain representations of abstract syntax

1. Content reading is in danger of being trivially false
2. Vehicle reading is in danger of being trivially true

18



Ambiguity of BERTology

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory
* Typical idea: content is based on information picked up from the data
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Ambiguity of BERTology

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory
* Typical idea: content is based on information picked up from the data

* Such information must be in the data to begin with
* But abstract syntax does not reduce to properties of linear strings
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Ambiguity of BERTology

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory
* Typical idea: content is based on information picked up from the data

* Such information must be in the data to begin with
* But abstract syntax does not reduce to properties of linear strings

“syntax determines units of combined lexical items that are not identifiable or individuated in
terms of linear order or any other perceptible property associated with morphophonemic form.”

“the perspective in [Chomsky (1975)] is top-down rather than bottom up. (...) the ‘representations
are not derived from the utterance.”

22



Ambiguity of BERTology

* Vehicle-reading succumbs to a different triviality problem

* Basic idea: cognitive states themselves realize abstract linguistic structure

“John saw Mary”

triggers

Y

Representation

realizes
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Ambiguity of BERTology

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: cognitive states themselves realize abstract linguistic structure

(1%

A mental representation of the grammar of the language’ is just the mental structure (brain
state) which is, at the relevant level of abstraction from physiological mechanisms, the grammar
of the language.”

“John saw Mary” HIgEsS

Y

Representation

realizes
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Ambiguity of BERTology

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: cognitive states themselves realize abstract linguistic structure
* But abstract structures are not literally “in” concrete systems — more indirect relation needed

“John saw Mary” HIgEsS
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Ambiguity of BERTology

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: cognitive states themselves realize abstract linguistic structure

(1H 7

* But abstract structures are not literally “in” concrete systems — more indirect relation needed

Merge(A, B) = {A, B}

“We don’t have sets in our heads. So you have to know that when we develop a theory about
our thinking, about our computation, internal processing and so on in terms of sets, that it's
going have to be translated into some terms that are neurologically realizable.”
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Ambiguity of BERTology

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: cognitive states themselves realize abstract linguistic structure
* But abstract structures are not literally “in” concrete systems — more indirect relation needed
* Mapping concrete vehicles to abstract structures

" 5 triggers _
John saw Mary 99 » Representation
realizes
3 mapping v
/\ D i i e
& e Vehicle-property
R
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Ambiguity of BERTology

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: cognitive states themselves realize abstract linguistic structure
* But abstract structures are not literally “in” concrete systems — more indirect relation needed
* Mapping concrete vehicles to abstract structures
* Mapping theories of computational implementation have well-known triviality problems
* Any sufficiently complex system can be mapped to abstract structures

* Anything can be mapped to finite-storage computation

28



Ambiguity of BERTology

* The mapping account could be salvaged by considering explanatory virtues of different mappings
* Abstract formalisms are used for surrogative reasoning about concrete systems

Example — An Adder

29



Ambiguity of BERTology

The mapping account could be salvaged by considering explanatory virtues of different mappings
Abstract formalisms are used for surrogative reasoning about concrete systems

Some formalisms yield better surrogative reasoning than others

Task: find linguistic formalism that yields the best surrogative reasoning about LLMs

Example — An Adder

30



Ambiguity of BERTology

* Probing: mapping embeddings of pre-trained LLMs to linguistic labels
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https://nlp.stanford.edu/~johnhew/structural-probe.html


https://nlp.stanford.edu/~johnhew/structural-probe.html

Ambiguity of BERTology

* Probing: mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations

Output

labels
(via pre-parsing)



Ambiguity of BERTology

* Probing: mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations

dg(hi, hy) = (B(h; — h;))" (B(h; — hy))

dg. parse tree distance between tokens
hi: encoding of /:th token

h;: encoding of j:th token

B = probe parameter matrix

33



Ambiguity of BERTology

* Supervised probing is insufficient for evaluating grammatical formalisms for LLM-interpretation:

What are the LLM-internal states that best predict formalism F?
VS.
What formalism F* best captures the LLM-internal pipeline?

I Input l:'|>

Output

NP Vp
Probe
> PN
\) NP
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Ambiguity of BERTology

* Supervised probing is insufficient for evaluating grammatical formalisms for LLM-interpretation:
What are the LLM-internal states that best predict formalism F?
VS.
What formalism F* best captures the LLM-internal pipeline?

I Input l:'|>

Output

/ \
|
‘ TR i WHY THIS?
Probe > I :
l\ V/\NP :

@ ar a» a» e e
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Parameter-free probing

* More “bottom-up” than supervised probing
* Constructing a syntactic parse directly from the LLM without training a separate probe

* No reliance on pre-determined labels

Output

I Input l:'|>




Parameter-free probing

* Perturbed masking
* Parameter-free probing technique developed by Wu et al.
* Generates syntactic dependencies from BERT-embeddings

f(zi,z;) = d(Ho(x\{wi}):, Ho(x\{zi, 7 })i)

X = (X1, ..., Xp): input sequence

6. model parameters

Ho(x \ {x;}})i: embedding of /:th token of x with x; masked

Ho(x \ {x;, x; })i: embedding of i:th token of x with x; and x; masked
d. Euclidean distance

f(xi, X;): impact of x; to the embedding of x;

37



Parameter-free probing

* Perturbed masking
* Parameter-free probing technique developed by Wu et al.
* Generates syntactic dependencies from BERT-embeddings

“In fact, there is actually no guarantee that our probe will find a strong correlation with
human-designed syntax, since we do not introduce the human-designed syntax as
supervision. What we found is the ‘natural’ syntax inherent in BERT, which is acquired
from self-supervised learning on plain text.”

38



Parameter-free probing

* Perturbed masking
* Parameter-free probing technique developed by Wu et al.
* Generates syntactic dependencies from BERT-embeddings

“In fact, there is actually no guarantee that our probe will find a strong correlation with
human-designed syntax, since we do not introduce the human-designed syntax as
supervision. What we found is the ‘natural’ syntax inherent in BERT, which is acquired
from self-supervised learning on plain text.”

* Buder-Grondahl (2024): replicating Wu et al’s results, and comparing BERT-derived parses to
Universal Dependencies (UD) in the English Parallel Universal Dependencies (PUD) treebank

39



Parameter-free probing

UD: fadvmod

=)
[ v det} \ ¥ nsubj

then commercial ends

BERT:
/

f —

then commercial ends

Dep(x): deprel assigned to x by UD
Headyp(x): head assigned to by UD
Headpgrr(x): head assigned to by BERT
Hy(xz) = Dep(Headyp(x))

Hp(x) = Dep(Headpgrr(x))

Dep(the) = det,
Hyj(the) = nsubj,
Hp(the) = root

40



Parameter-free probing

* Dependent-head shifts between UD and BERT:
* verbal argument structure
* noun phrase structure
* adjective/adverb modifiers
* prepositional phrases

* General results
* Shift ratio: 58%

* 80% of Dep-types had a shift rate over 50%
* Most common Hs: root (35% of all shifts)

41



Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments
* of determiners

 of adjective/adverb modifiers

that ’S not what we need

there was a time

this will put new limits on (...)

42



Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments

* of determiners

 of adjective/adverb modifiers

Dep Hy Ratio Count
root 0.24 198
aclrelcl (0.81) 140
nsibj ccomp 0.92 101
advcl 0.79 80
conj 0.83 68
parataxis | 0.64) 46
root 0.29 38
nsubj:pass  aclrelcl  (0.94) 32
advcl 0.91) 21
advel  (0.66) 86
xcomp 0.75 82
aclirelcl | 0.78 58
obj conj 0.66 58
acl 0.73) 52
root 0.15 47
ccomp | 0.73 | 29

Table 1: Verbal argument structure: subjects and objects.

Dep Hy Ratio Count
obl (0.52] 261
obj 0.67 253
nsubj 0.54 208
d nmod 0.49 191
et conj |os7| a4
nsubj:pass | 0.54 43
nmod:poss | 0.64 23
appos 0.68 21
obj 0.70 56
o dios nmod 0.72 55
obl 0.58 54
nsubj 0.70 53
— obl 0.69 95
nmod . 0.71) 25

Table 2: Determiners, possessors, and numerals.

Dep Hy Ratio Count

obj (0.62) 151
obl 0.52 151
nmod 0.53 132
amod nsubj 0.53 118
conj 0.63 56

nsubj:pass | 0.52 29
compound {0.57) 21

root 0.18 57

conj (0.62) 53

advcl 0.72 51

acl:relcl 0.73 40

— amod 0.73 36
advmod 0.71 32

nummod | 0.75 27

ccomp 0.68 27

obl 0.72 21

xcomp 0.72 21

obl 0.88 243

obj 0.89 202

nsubj 0.87 163
amod nmod 0.84 127
conj 0.88 59

nsubj:pass | 0.83 34

appos 0.85) 23

root 0.38 20

Table 3: Adjectival, adverbial, and nominal modifiers.
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Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments
* of determiners
 of adjective/adverb modifiers

* This behavior is:
* non-recursive
* not analyzable by familiar syntactic frameworks

44



Parameter-free probing

* Some of BERT’s behavior had a salient linguistic interpretation
* headedness of prepositional phrases: noun in UD, preposition in BERT
* headedness of possessive constructions: noun in UD, possessor in BERT

(UD)
/ — \
browse at the morning market

/ @ \
Clinton ’s large bank account
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Parameter-free probing

* Some of BERT’s behavior had a salient linguistic interpretation
* headedness of prepositional phrases: noun in UD, preposition in BERT
* headedness of possessive constructions: noun in UD, possessor in BERT

* This behavior is:
* a deviation from BERT’s general preference for the root as a head
* linguistically analyzable: direction of dependency between functional and lexical heads
* similar to alternative formalisms such as surface-syntactic UD (SUD)

46



Parameter-free probing

* If perturbed masking really uncovers BERT's “natural syntax”, it drastically differs from UD
* BERT vastly over-assigns the root as a head, resulting in a lack of recursion

* Some of BERT's deviations from UD have a linguistic analogy in the headedness direction
between functional and lexical heads (prepositional phrases and possessives)

47



Summary

* BERTology has committed to representational realism (implementational connectionism)
* This is ambiguous between vehicle- and content-readings of “linguistic representation”
* Content-reading makes representation-claims of abstract syntax trivially false
* Vehicle-reading succumbs to the triviality-problem in mapping accounts of implementation

* Vehicle-reading could be salvaged: which formalism optimally captures the LLM-pipeline?

* Supervised probing is too weak to establish this: linguistic analysis is presupposed
* Parameter-free probing is more “bottom-up”, but many results are linguistically incoherent

48



Extra slides: probing algorithms

* Mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations

dp(hi, h;) = (B(h; — h;))" (B(h; — hy))

ds: parse tree distance between tokens
hi: encoding of j:th token

h;: encoding of j:th token

B = probe parameter matrix

49



Extra slides: probing algorithms

* Mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations
* Parameter-free probing: unsupervised “bottom-up” alternative

f@i, x5) = d(Ho(x\{i} )i, Ho(x\{%i, 75} )i)

f. impact between two tokens — syntactic relation (dependency/phrase)
d = Euclidean distance

Ho(Xx)i: encoding of i:th token of input x (model parameters 0)

x\{xi}: input x with i:th token masked

x\{x;, xj}: input x with 7:th token masked

50



Extra slides: result tables

Dep Hy Ratio Count i

root 024 198 Dep Hy  Ratio Count

acl:relcl  0.81 140 Om 0.52 261

subi ccomp  0.92 101 obj _ 0.67 253
) advel 079 80 nsubj  0.54 208
conj | 0.83 68 det nmo.d 0.49 191

parataxis  0.64 46 conj 0.57 44

root 0.29 38 nsubj:pass  0.54 43

nsubj:pass aclrelcl  0.94 32 nmod:poss  0.64 23
advcl 0.91 21 appos 0.68 21

advcl 0.66 86 obj 0.70 56

xcomp  0.75 82 amodposs  M0d 072 5

aclirelcl  0.78 58 ' obl 0.58 54

obj conj 0.66 58 nsubj 0.70 53
acl 0.73 52 —— obl 0.69 55

root  0.15 47 HIO nmod  0.71 25

ccomp 0.73 29

Table 2: Determiners, possessors, and numerals.
Table 1: Verbal argument structure: subjects and objects.



Extra slides: result tables

Dep Hy Ratio Count
obj 0.62 151
obl 0.52 151
nmod 0.53 132
amod nsubj 0.53 118 Dep HU Ratio Count
conj 0.63 56
nsubj:pass  0.52 29 obl 0.72 877
compound  0.57 21 case nmod 0.73 783
root 0.18 57 nmod:poss .83 85
conj 0.62 53
advcl 0:72 51 root 0.47 283
aclirezcl 8- Zg ;lg acl:relcl 0.97 117
amo .
advmed advmod 0.71 32 advcl 0.95 92
nummod  0.75 27 acl 0.93 388
ccomp 0.68 27 obl COIlj 0.91 90
obl 0.72 21
xcomp 0.72 21 xcomp 0.95 89
obl 0.88 243 ccomp 0.96 50
obj 0.89 202

nsubj 0.87 163 parataXiS 096 25

nmod 0.84 127
conj 0.88 59 Table 4: Prepositional phrases.
nsubj:pass  0.83 34
appos 0.85 23
root 0.38 20

nmod

Table 3: Adjectival, adverbial, and nominal modifiers. 52



Extra slides: result tables

Dep Ratio Count
case 0.7251 1799
punct 0.5135 1252
det 0.5433 1105
nmod 0.8500 912
obl 0.7082 869
amod 0.5402 719
nsubj 0.4683 650
compound 0.6675 538
conj 0.8176 511
mark 0.7964 442
obj 0.5011 438
cc 0.7615 431
advmod 0.5035 426
nmod:poss  0.6703 244
advcl 0.7158 209
aux 0.4474 183
aclirelcl 0.8483 179
xcomp 0.5815 157
nummod 0.6071 153
nsubj:pass 0.5720 135
acl 0.6895 131
appos 0.8310 118
flat 0.4978 114
cop 0.3270 103
ccomp 0.7259 98
aux:pass 0.2915 79
parataxis 0.5979 58
fixed 0.5243 54
root 0.0363 36
compound:prt  0.4714 33
nmod:tmod  0.6667 26
csubj 0.5926 16
expl 0.2459 15
oblinpmod  0.7000 14
obl:tmod 0.6111 11
nmod:npmod  0.5263 10
det:predet 0.8889 8
cc:preconj 0.5455 6
csubj:pass 1.0000 3
dislocated 1.0000 2
reparandum  1.0000 1
discourse 1.0000 1
iobj 0.1000 1

Table 6: All dependency-head shifts ordered by Dep
(“Ratio”: ratio of shifts from all tokens with the Dep).

Hy Ratio Count
obl 0.6802 2048
root 0.2664 1694
nmod 0.6788 1655
conj 0.7654 1292
obj 0.7283 946
nsubj 0.6651 872

advel 0.7791 663
aclrelel 0.8109 579
xcomp 0.8168 495
ccomp 0.8327 458
acl 0.7762 281
appos 0.7301 238
parataxis 0.7409 223
nsubj:pass  0.6494 176
amod 0.7368 140
nmod:poss  0.7707 121
compound  0.6289 100
advmod 0.7810 82

csubyj 0.7703 57
nummod 0.8036 45
flat 0.8276 24

cc 0.8750 14

oblmpmod  0.6667 14
obl:tmod 0.5833 14
csubj:pass  (0.8667 13

mark 0.6000 9
nmod:tmod  0.2857 8
case 0.1591 7
dislocated 1.0000 G
nmod:npmod  0.8571 6
iobj 0.8333 5

dep 1.0000 2

det 0.6667 2

1

ccipreconj 1.0000

Table 7: All dependency-head shifts ordered by Hys

(“Ratio™: ratio of shifts from all tokens with the Hy).

Hp Ratio Count
root 0.4763 4244
case 0.9684 1135
amod 0.9386 764
compound 0.9107 602
nsubj 0.5525 542
obl 0.3431 503
nmod 0.3771 474
det 0.9978 453
punct 1.0000 404
obj 0.5306 399
advmod 0.9425 377
cc 0.9936 310
conj 0.4107 276
mark 0.9636 159
nummod 0.9341 156
advcl 0.4519 155
cop 1.0000 122

nsubj:pass 0.5622 122
nmod:poss  0.7707 121

aux 1.0000 119
xcomp 0.5174 119
acl 0.5622 104
flat 0.9533 102

aux:pass 1.0000 92
acl:relcl 0.3571 75
parataxis 0.4621 67
ccomp 0.3907 59
appos 0.3931 57
fixed 1.0000 55
compound:prt  1.0000 33
nmod:tmod  0.5455 24
expl 1.0000 14
obl:npmod  0.6316 12
det:predet 1.0000
nmod:npmod  0.9000
csubj 0.3462
ceipreconj 1.0000
obl:tmod 0.2308
reparandum  0.6667
dislocated 1.0000
discourse 1.0000
vocative 1.0000
csubj:pass 0.3333

H R PPN WR O oo

Table 8: All dependency-head shifts ordered by Hp
(“Ratio™: ratio of shifts from all tokens with the Hg).



Extra slides: result tables

Dep-Hy-Hpg shift (count)

case-obl-root (521)
det-obj-root (141)
punct-root-obl (117)
det-nmod-case (100)
mark-xcomp-root (87)
nmod-obj-root (83)
case-nmod-nmod (73)
amod-obj-root (64)
case-nmod:poss-root (56)
case-obl-acl (52)
punct-root-punct (45)
compound-obl-root (44)
obl-acl-root (43)
obl-conj-root (41)
punct-root-nmod (38)
obl-root-compound (38)
nummod-obl-root (36)
obj-xcomp-root (35)
case-obl-advcl (33)
nmod-obj-case (32)
nmod-nmod-case (31)
punct-appos-root (30)
case-nmod-det (29)
cc-conj-obl (27)
det-nmod-root (26)
det-nmod-compound (25)
nsubj-conj-root (25)
obl-root-nmod (24)
nmod:poss-nmod-case (23)
det-obj-amod (22)
cc-conj-nmod (22)
nmod-nsubj-case (21)
obj-acl:relcl-root (21)
case-obl-xcomp (20)
compound-nmod-case (20)

case-nmod-root (231)
det-nsubj-root (134)
nmod-obl-root (107)
case-nmod-obj (99)

nmod-nsubj-root (85)

punct-root-nsubj (79)

det-obl-amod (66)
det-obl-root (62)
nmod-nmod-root (54)
nsubj-acl:relcl-root (52)
compound-nsubj-root (45)
compound-nmod-root (43)
obl-acl:relcl-root (43)
amod-obj-det (40)

amod-nmod-root (38)

nsubj-advcl-root (37)
punct-root-parataxis (35)
punct-conj-conj (35)
case-obl-conj (33)
det-nmod-amod (31)
nsubj-root-compound (31)

case-obl-acl:relcl (30)
det-nsubj-amod (28)

punct-conj-nmod (26)

det-obj-advcl (26)
nmod-conj-root (25)
obj-acl-root (25)
conj-nsubj-root (24)
nmod:poss-nsubj-root (23)
obl-acl:relcl-case (22)
advmod-advcl-root (22)
obl-root-nummod (21)
acl-obj-root (21)

nmod-obl-amod (20)
obl-ccomp-root (20)

cc-conj-root (191)
case-nmod-obl (122)
det-obl-case (101)
obl-root-case (97)
mark-advcl-root (84)
case-nmod-nsubj (79)
nsubj-ccomp-root (66)
amod-obl-root (61)
punct-root-advmod (53)
amod-nsubj-root (49)
mark-ccomp-root (44)
obl-xcomp-root (43)
punct-conj-cc (41)
obl-root-amod (40)
obl-advcl-root (38)
obj-advcl-root (36)
nsubj-root-amod (35)
nmod-obl-case (34)
punct-conj-root (32)
amod-nmod-case (31)
nmod:poss-obl-case (31)
conj-nmod-root (30)
nmod-obj-amod (28)
case-nmod-conj (26)

nmod-obl-compound (26)

compound-obj-root (25)
det-nsubj:pass-root (24)
amod-obl-det (23)
punct-conj-obl (22)
nsubj-root-case (22)
conj-nmod-cc (22)
flat-nsubj-root (21)
punct-root-det (20)
compound-obl-det (20)

Table 9: Dep—H;—H p shifts and their counts (minimum count: 20).
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