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Neural networks: Basics
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Neural network
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Neural network

i1
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(...)

o1

(...)

Input: Output:

om

Input vector:
i = [i1, …, in]

Output vector:
o = [o1, …, om]

Weights
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Neural network

i1
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Input vector:
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Weighted sums of inputs:
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Neural network

i1

in

(...)

u1

(...)

Input vector:
i = [i1, …, in]

Weighted sums of inputs:
u =  iW = [u1, …, um]

Weight matrix: 

W=[w11 ... w1m
... ... ...
wn1 ... wnm]

um

w11

w
1m

wn1

wnm

 ϕ 

o1

(...)

om

Activation function:
ϕ  {σ, tanh, ReLu, ...}∈

Output:
o = ϕ(u) = [o1, …, om]
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Deep Neural Network (DNN)

(...) (...)

Input: Output:

(...) (...) (...)

Hidden layers:
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Training a DNN

Input

Output

DNN
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Training a DNN

Input

Output Loss Target
output

DNN
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Training a DNN

Input

Output Loss

Loss minimization by modifying weights =
back-propagation of error

Target
output

DNN
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Training a DNN

Input

Output Loss

Loss minimization by modifying weights =
back-propagation of error

Target
output

DNN

Technical basis: gradient descent



Recurrent neural networks (RNNs)
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Sequential data: influence of context

I run

I went for a run
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Sequential data: influence of context

I run

I went for a run
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Recurrent connections
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run
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Recurrent connections
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)

i1

o1

RNN
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Recurrent Neural Network (RNN)

Input sequence

Output sequence

RNN



Encoder-decoder RNNs + Attention
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Encoder-decoder RNN

Basic RNN maps inputs to outputs 1-1
● Part-of-speech tagging
● Spelling correction
● (...)
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Encoder-decoder RNN

Basic RNN maps inputs to outputs 1-1
● Part-of-speech tagging
● Spelling correction
● (...)

But we often want more flexible input-output mappings: e.g. machine translation
● Grammatical and lexical variation → different number of words between sentences
● Word-order variation
● (...)
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Encoder-decoder RNN
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Encoder-decoder RNN
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Vanishing gradient

Problem
● Older encoder inputs have less effect than more recent ones
● Harder to find long-distance dependencies

The dog that chased two cats is brown
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Vanishing gradient

Problem
● Older encoder inputs have less effect than more recent ones
● Harder to find long-distance dependencies

The dog that chased two cats is brown

Long short-term memory (LSTM)
● More complex RNN to alleviate the vanishing gradient problem
● Two distinct hidden states updated differently, allowing better retention of information
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Vanishing gradient

Problem
● Older encoder inputs have less effect than more recent ones
● Harder to find long-distance dependencies

The dog that chased two cats is brown

Long short-term memory (LSTM)
● More complex RNN to alleviate the vanishing gradient problem
● Two distinct hidden states updated differently, allowing better retention of information
● Bidirectional LSTMs: reading input from front-to-back and back-to-front, combining results
● Gated recurrent unit (GRU): similar to LSTM but simpler
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Vanishing gradient

Attention
● Calculates a probability distribution across all encoding steps
● Combines all encoder outputs weighted by the probability distribution
● Using the result as additional decoder input
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Encoder-decoder RNN
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Encoder-decoder RNN + Attention
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Transformer
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Transformer
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Transformer

Input embeddings + 
positional encoding

Add + normalize

Feed-forward

Add + normalize

Input embeddings + 
positional encoding

Add + normalize

Add + normalize

Feed-forward

Add + normalize

Linear + 
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Multi-head 
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Transformer
Each input word has an embedding, which is combined with positional encoding.

I went runfor a

I_1 went_2 run_5for_3 a_4
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Transformer
Each input word has an embedding, which is combined with positional encoding.

Input goes through multi-head self-attention, creating new contextual encodings for each token.

Contextual encoding for each token is calculated from previous embeddings of each token.

I went runfor a

I_1 went_2 run_5for_3 a_4

I_1 went_2 run_5for_3 a_4
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Transformer

Input embeddings + 
positional encoding

Each input word has an embedding, which is combined with 
positional encoding.



40Tommi Buder-Gröndahl: Large Language Models and their Interpretation, 14.5.2024

Transformer

Input embeddings + 
positional encoding

Multi-head 
self-attention

Each input word has an embedding, which is combined with 
positional encoding.

Each Transformer layer contains (several) attention heads.

An attention head contains three weight matrices:
query weights: Wq

key weigths: Wk

value weights: Wv

Input embedding xi is multiplied by each matrix, which yields:
query-vector: qi = xiWq

key-vector: ki = xiWk

value-vector: vi = xiWv
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Transformer

Input embeddings + 
positional encoding

Multi-head 
self-attention

Each input word has an embedding, which is combined with 
positional encoding.

Each Transformer layer contains (several) attention heads.

An attention head contains three weight matrices:
query weights: Wq

key weigths: Wk

value weights: Wv

Input embedding xi is multiplied by each matrix, which yields:
query-vector: qi = xiWq

key-vector: ki = xiWk

value-vector: vi = xiWv

Attention between inputs i and j:

(dk = dimensionality of kj)

Output for input i = sum of all vj weighted with  
(contextual encoding)

aij=softmax(
q i.k j

√dk
)

aij
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Transformer

Input embeddings + 
positional encoding

Multi-head 
self-attention

Each input word has an embedding, which is combined with 
positional encoding.

Multi-head self-attention:

Q: query matrix
K: key matrix
V: value matrix

Attention(Q,K,V )=softmax(QK
T

√dk
)V
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Transformer

Input embeddings + 
positional encoding

Add + normalize

Multi-head 
self-attention

Each input word has an embedding, which is combined with 
positional encoding.

Input goes through multi-head self-attention.

Outputs of attention heads are combined
(+ residual connections).
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Transformer

Input embeddings + 
positional encoding

Add + normalize

Feed-forward

Add + normalize

Multi-head 
self-attention

Each input word has an embedding, which is combined with 
positional encoding.

Input goes through multi-head self-attention.

Outputs of attention heads are combined
(+ residual connections).

Output functions as input to a feed-forward network
(+ residual connections).
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Transformer

Input embeddings + 
positional encoding

Add + normalize

Feed-forward

Add + normalize

Input embeddings + 
positional encoding

Add + normalize

Add + normalize

Feed-forward

Add + normalize

Linear + 
softmax

Multi-head 
self-attention

Multi-head 
self-attention

Multi-head 
self-attention

Encoder-decoder Transformer: the decoder is like the encoder, 
but gets additional input via encoder-decoder attention
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RNN vs. Transformer?
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Add + normalize

Feed-forward

Add + normalize

Input embeddings + 
positional encoding

Add + normalize

Add + normalize

Feed-forward

Add + normalize

Linear + 
softmax

Multi-head 
self-attention

Multi-head 
self-attention

Multi-head 
self-attention



47Tommi Buder-Gröndahl: Large Language Models and their Interpretation, 14.5.2024

RNN vs. Transformer?

RNN Transformer

Based on recurrent connections No recurrent connections

Attention is a useful addition Fully Attention-based

Goes through the input one token at a time Goes through all tokens in parallel

Generates one representation of the whole 
input (last encoding step)

Generates a separate encoding for each 
input token

Order between tokens arises indirectly via 
processing steps

Positional encoding added to each input 
token separately

Long-distance dependencies are especially 
challenging (vanishing gradient)

Distance between tokens has no direct 
impact on the strength of their connection

Input goes through multi-head self-attention.



Large Language Models (LLMs)
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Popular LLMs

Input embeddings + 
positional encoding

Add + normalize

Feed-forward

Add + normalize

Input embeddings + 
positional encoding

Add + normalize

Add + normalize

Feed-forward

Add + normalize

Linear + 
softmax

Multi-head 
self-attention

Multi-head 
self-attention

Multi-head 
self-attention

BERT: encoder

GPT: decoder
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BERT: predicting masked tokens

BERT

The <MASK> chased the cat

dog
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BERT: predicting masked tokens

dog

The_1

The <MASK> chased the cat

<MASK>_2 chased_3 the_4 cat_5
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BERT: classifying whole texts

BERT BERT

The dog chased the cat Did the dog chase the cat

declarative question
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BERT: classifying whole texts

declarative

<CLS>_1

<CLS> The dog chased the cat

The_2 dog_3 chased_4 the_5 cat_6
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BERT: classifying whole texts

question

<CLS>_1

<CLS> Did the dog chase the cat

the_3 dog_4 chase_5 the_6 cat_7Did_2
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GPT: predicting the next token

GPT

The dog chased the

cat
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GPT: predicting the next token

GPT

PROMPT + t1

t2

GPT

PROMPT

t1

(...) GPT

PROMPT + t1 + … + tn-1

tn
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BERT vs. GPT

BERT
(Bidirectional Encoder 

Representations from Transformers)

GPT
(Generative Pre-trained 

Transformer)

Architecture Transformer-encoder Transformer-decoder

Input Text Prompt + prior output

Output Encoding of each token Next token

Training Predicting masked tokens Predicting upcoming text
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LLM variants

https://360digitmg.com/blog/bert-variants-and-their-differences https://www.makeuseof.com/gpt-models-explained-and-compared/

https://360digitmg.com/blog/bert-variants-and-their-differences
https://www.makeuseof.com/gpt-models-explained-and-compared/


Interpreting LLMs
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Methods

Behavioral methods
● Measuring the performance of LLMs on linguistically relevant data
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Methods

Behavioral methods
● Measuring the performance of LLMs on linguistically relevant data
● LSTMs and Transformers learn some long-distance dependencies, but commonly rely on 

linear order rather than hierarchical structure (Linzen et al. 2016, Yedetore et al. 2023)

(Yedetore et al. 2023)
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Methods

Attention visualization
● Displaying the allocation of attention for each contextual encoding (Bahdanau et al. 2015)
● Challenge: only concerns the input, not the hidden layers
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Probing

● Mapping embeddings of pre-trained LLMs to linguistic labels

https://nlp.stanford.edu/~johnhew/structural-probe.html

https://nlp.stanford.edu/~johnhew/structural-probe.html
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Probing

● Mapping embeddings of pre-trained LLMs to linguistic labels
● Typically supervised: labels obtained from human-made (or rule-based) annotations
● Parameter-free probing: unsupervised “bottom-up” alternative (Wu et al. 2020)

LLM

Probe

LLM

construction

Parameter-free:Supervised:
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“BERTology” (Rogers et al. 2020)

Grammatical specialization of layers (Tenney et al. 2019, Manning et al. 2020)
● Early layers: superficial information (e.g. part-of-speech, word-order)
● Middle layers: syntactic structure
● Late layers: abstract semantics (e.g. argument structure)



66Tommi Buder-Gröndahl: Large Language Models and their Interpretation, 14.5.2024

“BERTology” (Rogers et al. 2020)

Grammatical specialization of layers (Tenney et al. 2019, Manning et al. 2020)
● Early layers: superficial information (e.g. part-of-speech, word-order)
● Middle layers: syntactic structure
● Late layers: abstract semantics (e.g. argument structure)

● Semantics can also be distributed across layers (Tenney et al. 2019)
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“BERTology” (Rogers et al. 2020)

Syntactic structure
● Probably not directly in attention heads (Htut et al. 2019)
● But encodings can be used to construct syntax (Hewitt & Manning 2019, Wu et al. 2020)
● BERT is sensitive to grammatical relations such as agreement (Goldberg 2019)
● But changing word-order or removing arguments doesn’t always have an effect (Ettinger 2019)

Semantic information
● Thematic roles partly reconstructable via probing (Tenney et al. 2019)
● Challenges with e.g. names and numbers (Wallace et al. 2019, Balasubramanian et al. 2020)

“World knowledge”
● LLMs succeed at certain pragmatic resoning tasks (Petroni et al. 2019)
● Difficulties with tasks that require multi-step reasoning (Forbes et al. 2019)
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Challenges (Kulmizev & Nivre 2022)

Grammar vs. “coding properties”
● Syntactic relations (e.g. “subject”) can be coded by word-order, agreement, etc.

Assumptions about grammatical formalism
● Choice of formalism impacts probing results (Kulmizev et al. 2020)

Separating variables
● Data, model architecture, task, linguistic phenomenon

Specifying research questions
● What does the model learn?
● What could the model learn?
● What must the model learn?
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Challenges (Kulmizev & Nivre 2022)

“(…) hypotheses, methodologies, and conclusions comprise many conflicting insights, giving rise 
to a paradoxical picture reminiscent of Schrödinger's cat – where syntax appears to be 
simultaneously dead and alive inside the black box models.”
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Challenges (my work)

Ambiguity of “linguistic representation” (Buder-Gröndahl 2023)
● Are linguistic properties in the data or in cognition?

“John saw Mary”
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Challenges (my work)

Ambiguity of “linguistic representation” (Buder-Gröndahl 2023)
● Are linguistic properties in the data or in cognition?

“It remains for linguists to show, in detail, that the speaker has no ‘ideas’, and that the noise is 
sufficient.”

(Bloomfield, 1936: 93)

It is appropriate, in my opinion, to regard the grammar of L as a representation of fundamental 
aspects of the knowledge of L possessed by the speaker-hearer who has mastered L.”

(Chomsky, 1975: 5)
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Challenges

LLM

???
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