



# Large Language Models and their interpretation

*Tommi Buder-Gröndahl*

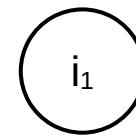
# Lecture structure

- 1. Neural networks: Basics**
- 2. Recurrent neural networks (RNNs)**
- 3. Attention**
- 4. Transformer**
- 5. Large Language Models (LLMs)**
- 6. Interpreting LLMs**

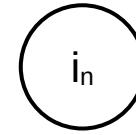
# Neural networks: Basics

# Neural network

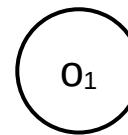
**Input:**



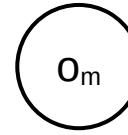
$\dots$



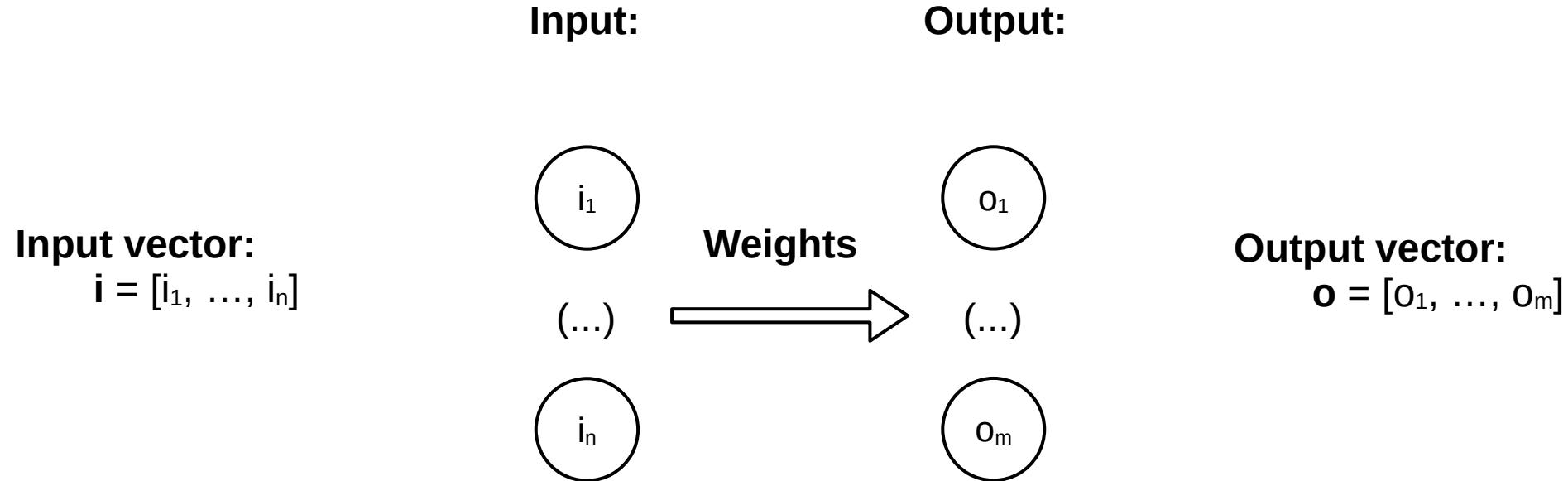
**Output:**



$\dots$



# Neural network



# Neural network

**Input vector:**

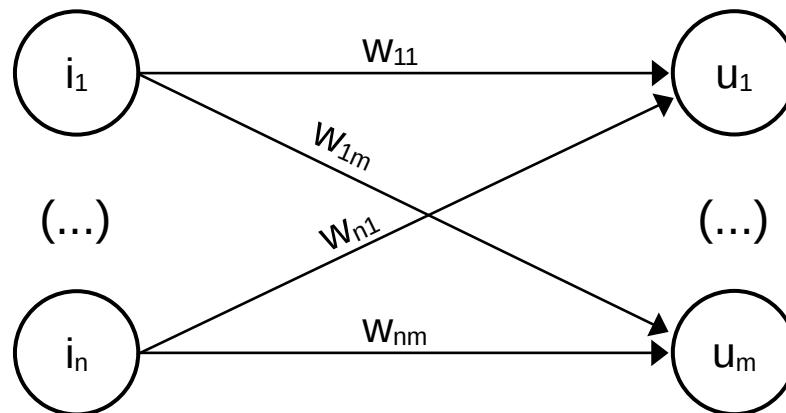
$$\mathbf{i} = [i_1, \dots, i_n]$$

**Weight matrix:**

$$W = \begin{bmatrix} w_{11} & \dots & w_{1m} \\ \dots & \dots & \dots \\ w_{n1} & \dots & w_{nm} \end{bmatrix}$$

**Weighted sums of inputs:**

$$\mathbf{u} = \mathbf{i}W = [u_1, \dots, u_m]$$



# Neural network

**Input vector:**

$$\mathbf{i} = [i_1, \dots, i_n]$$

**Weight matrix:**

$$W = \begin{bmatrix} w_{11} & \dots & w_{1m} \\ \dots & \dots & \dots \\ w_{n1} & \dots & w_{nm} \end{bmatrix}$$

**Weighted sums of inputs:**

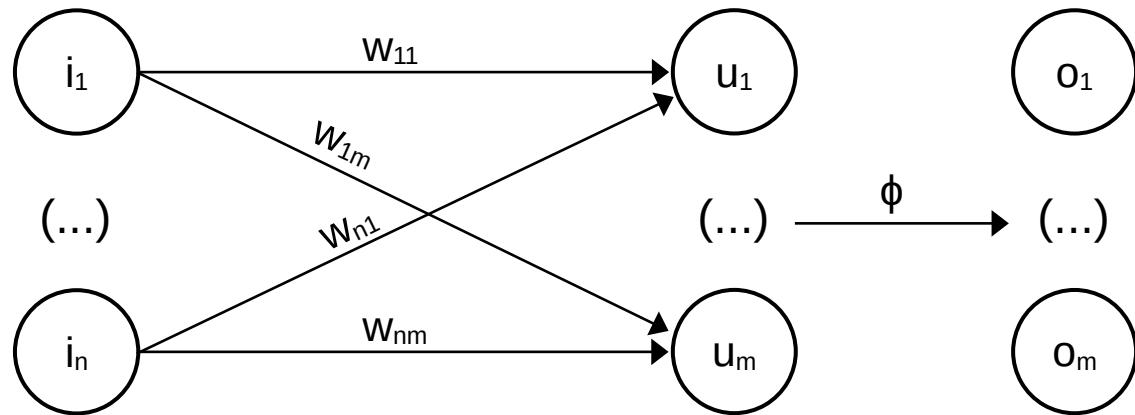
$$\mathbf{u} = \mathbf{i}W = [u_1, \dots, u_m]$$

**Activation function:**

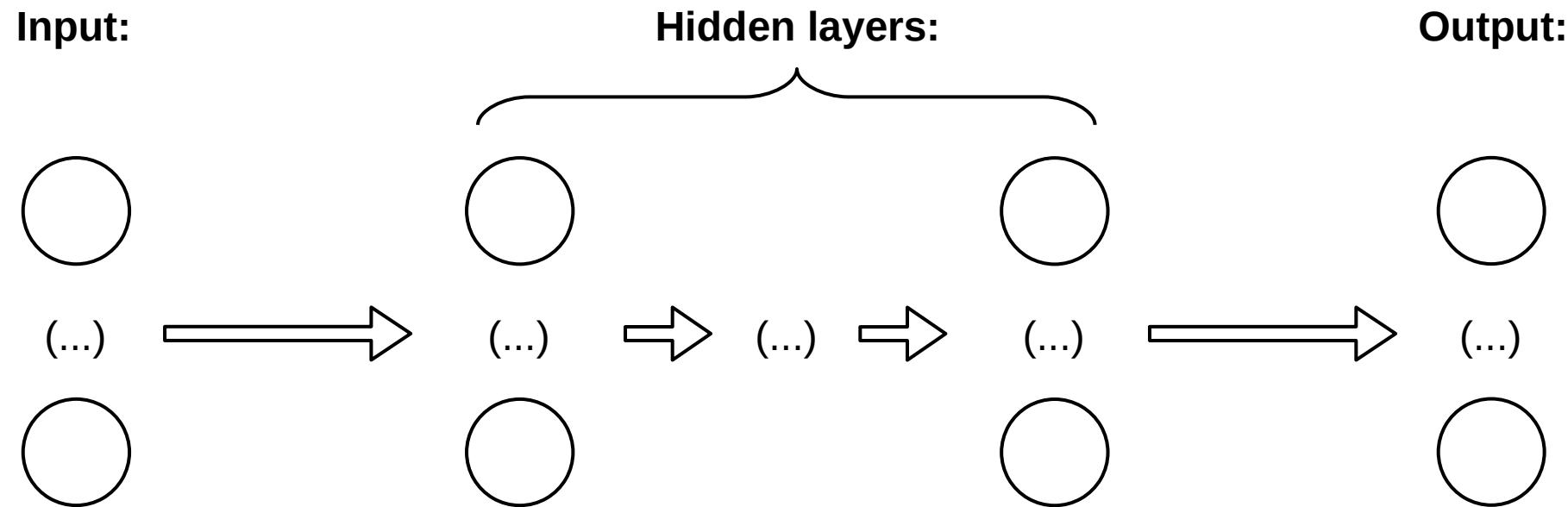
$$\phi \in \{\sigma, \tanh, \text{ReLU}, \dots\}$$

**Output:**

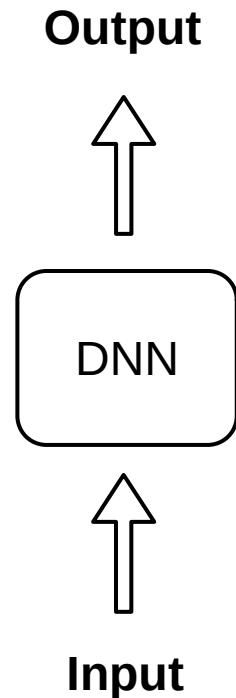
$$\mathbf{o} = \phi(\mathbf{u}) = [o_1, \dots, o_m]$$



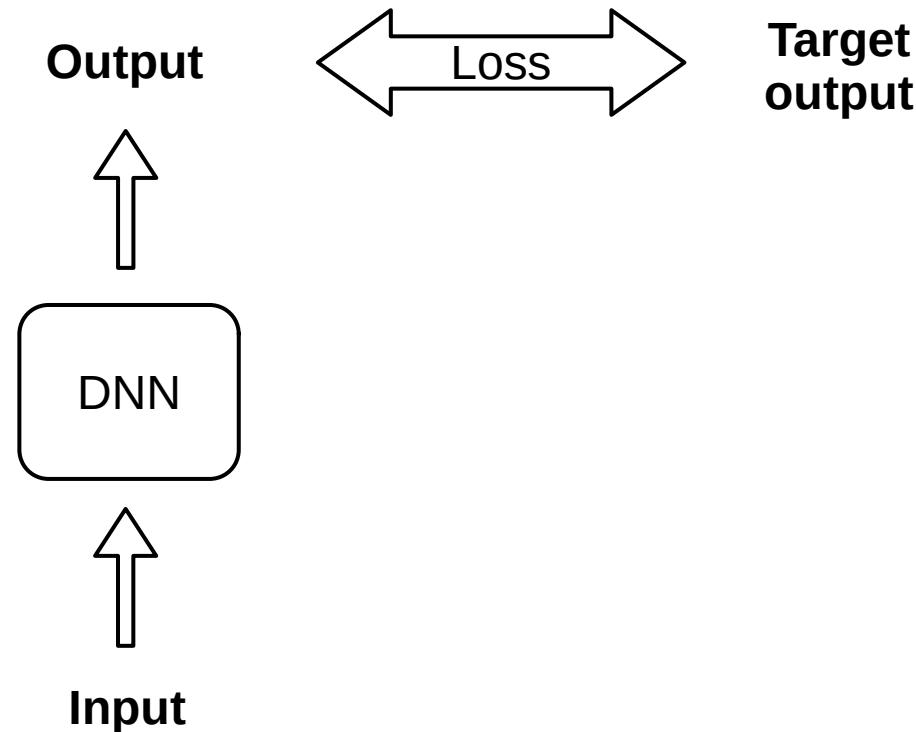
# Deep Neural Network (DNN)



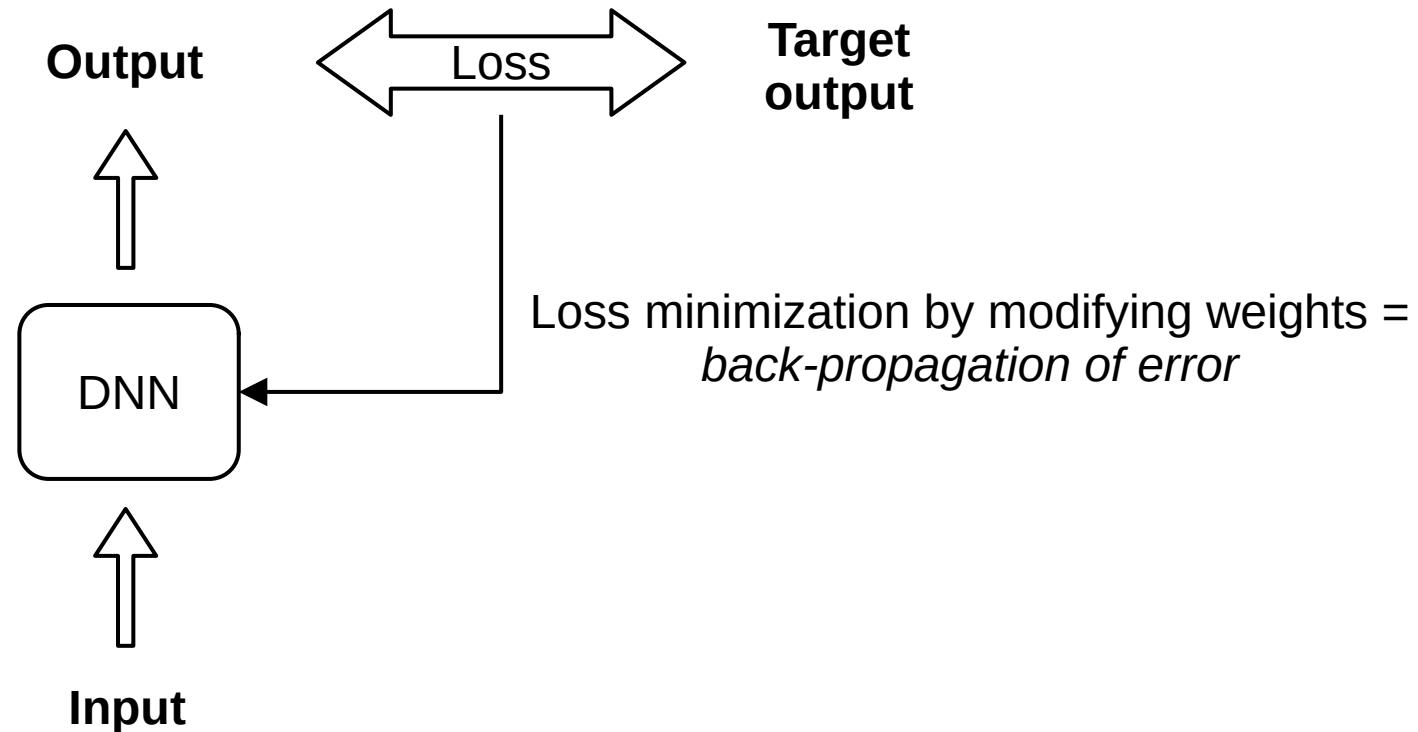
# Training a DNN



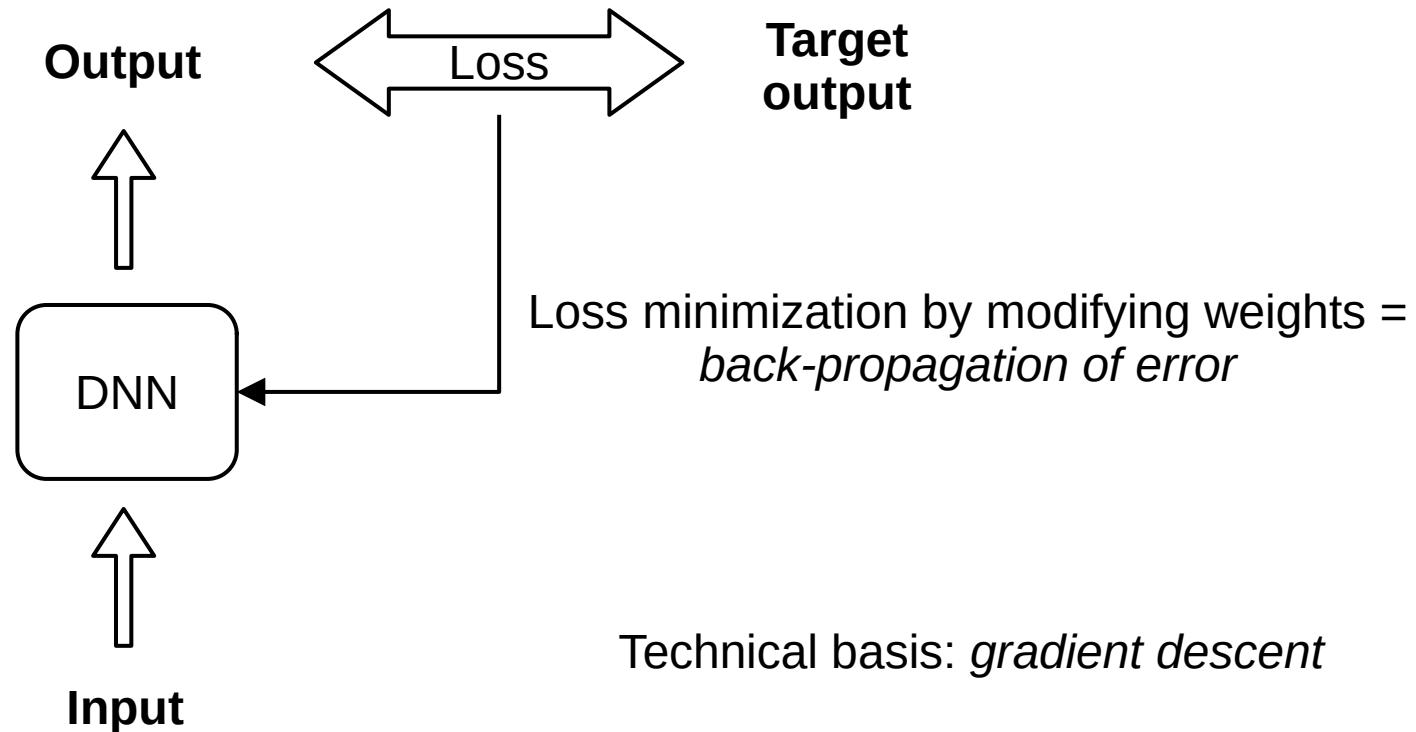
# Training a DNN



# Training a DNN



# Training a DNN



# Recurrent neural networks (RNNs)

# Sequential data: influence of context

*I run*

*I went for a run*

# Sequential data: influence of context

*I run*

*I went for a run*

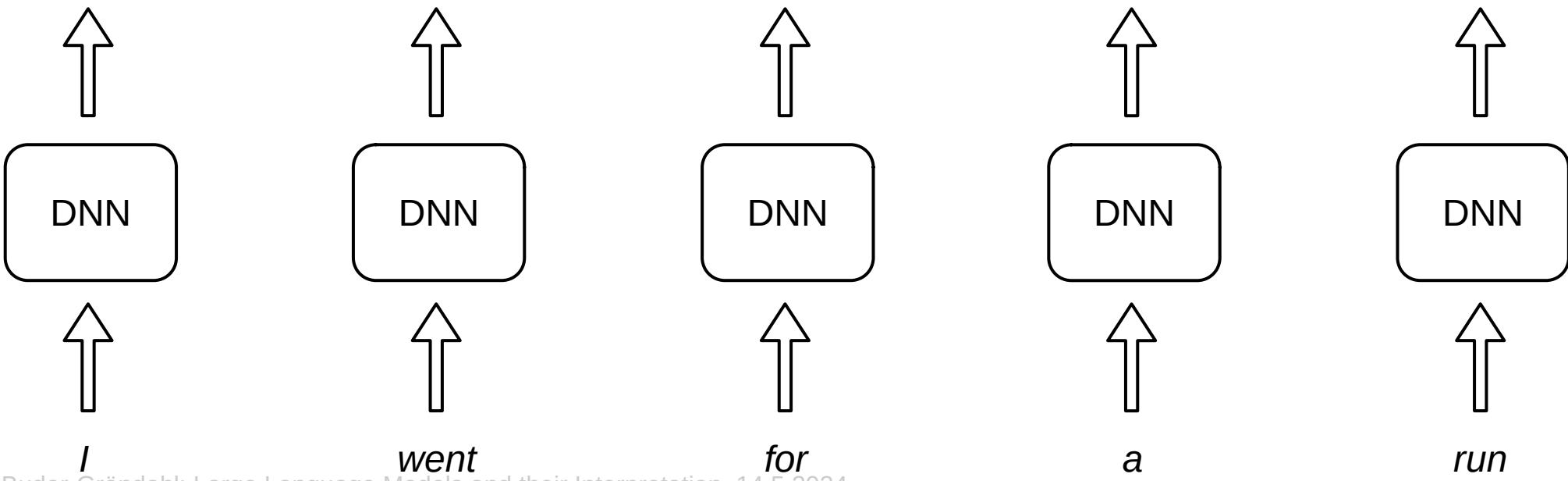
PRON

V

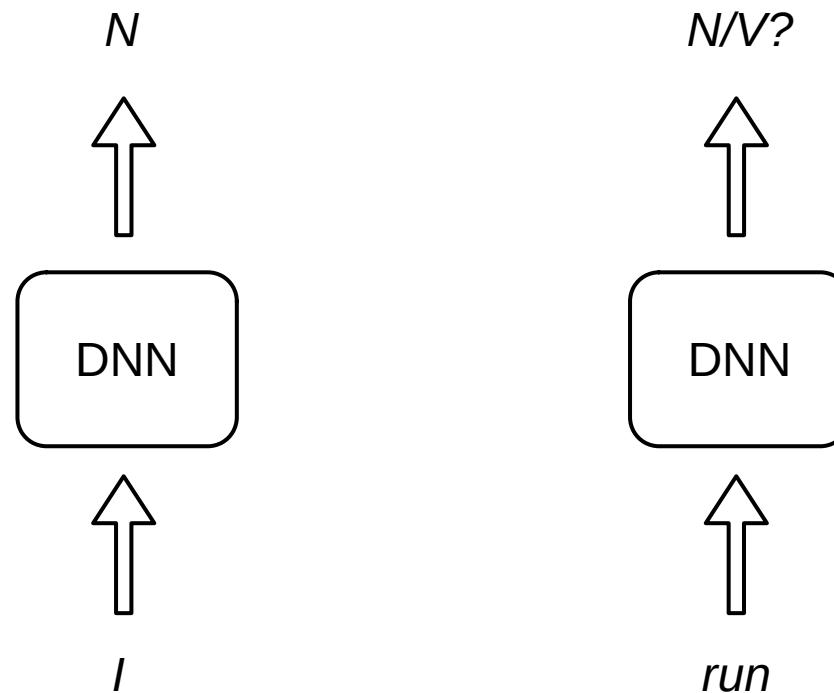
P

D

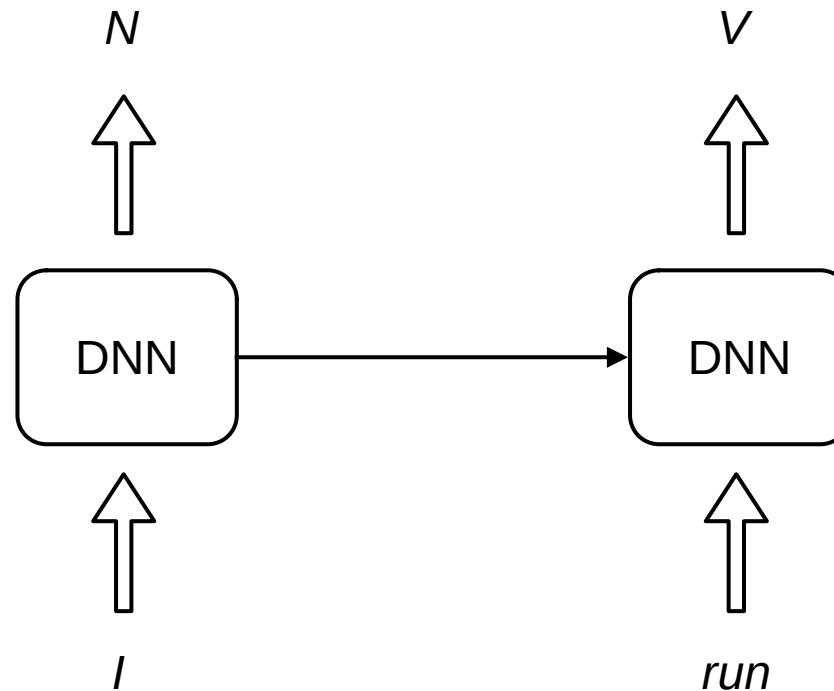
N/V?



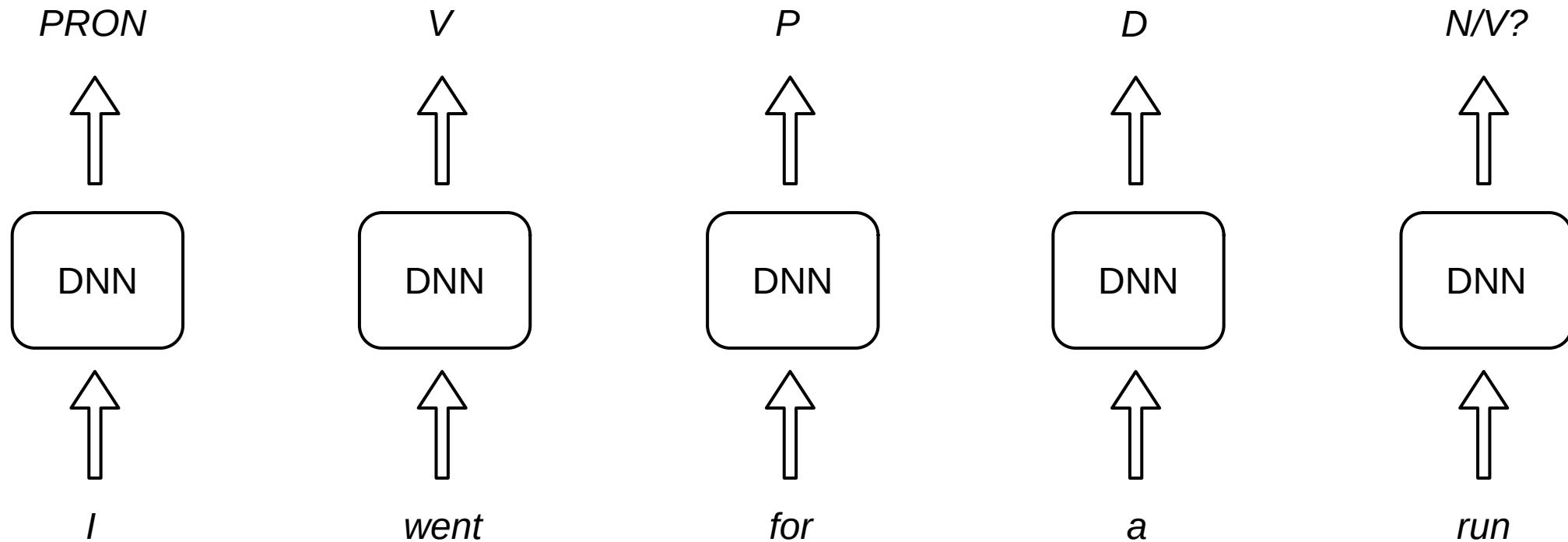
# Recurrent connections



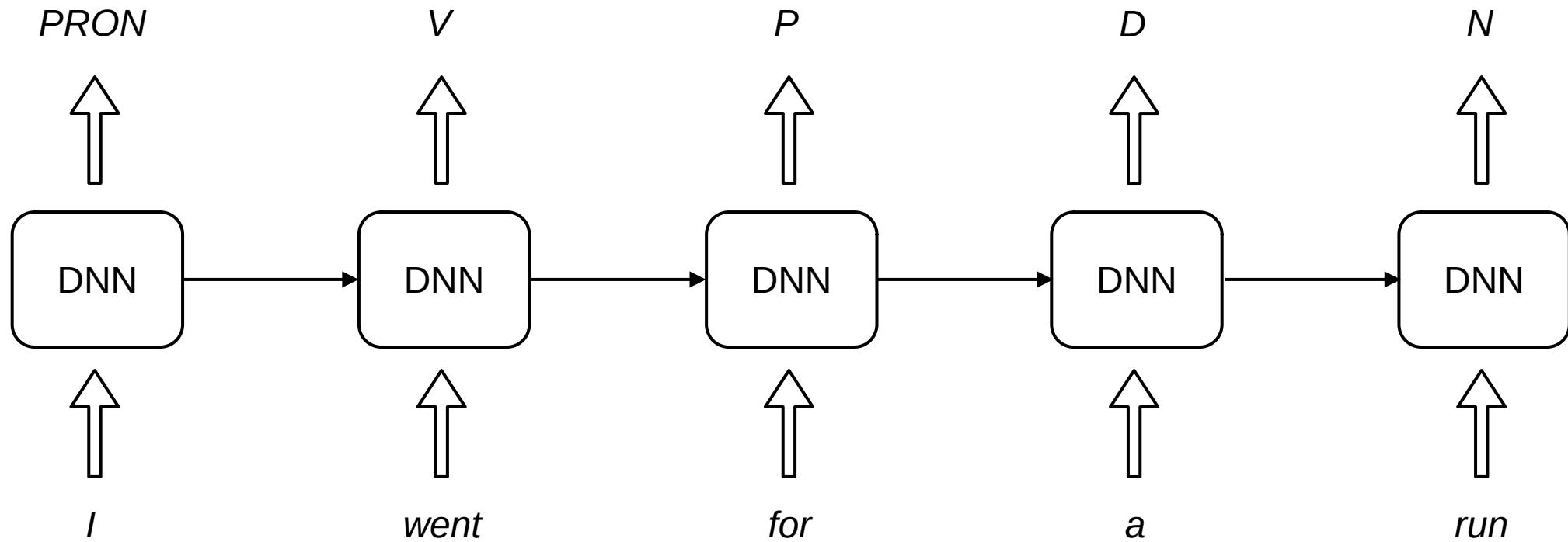
# Recurrent connections



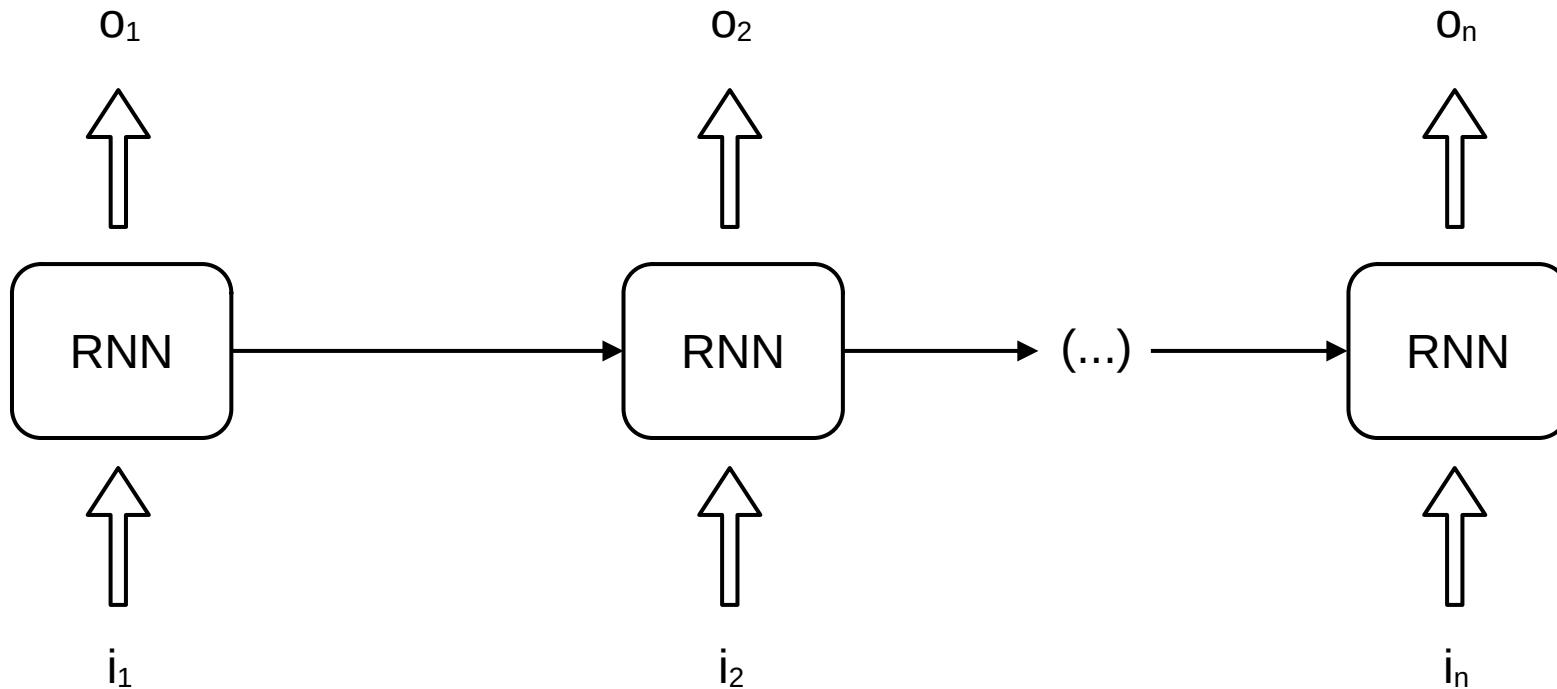
# Recurrent connections



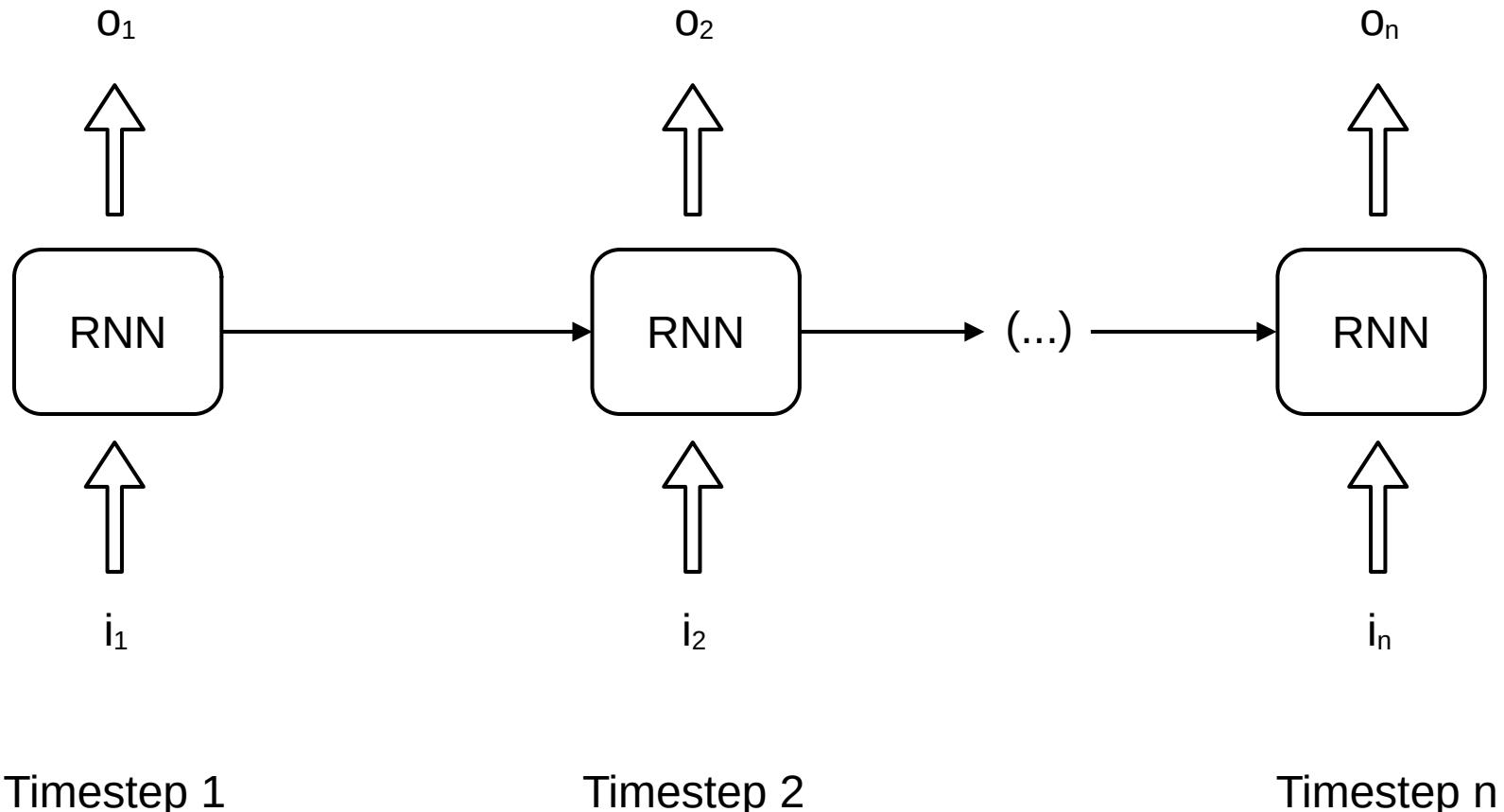
# Recurrent connections



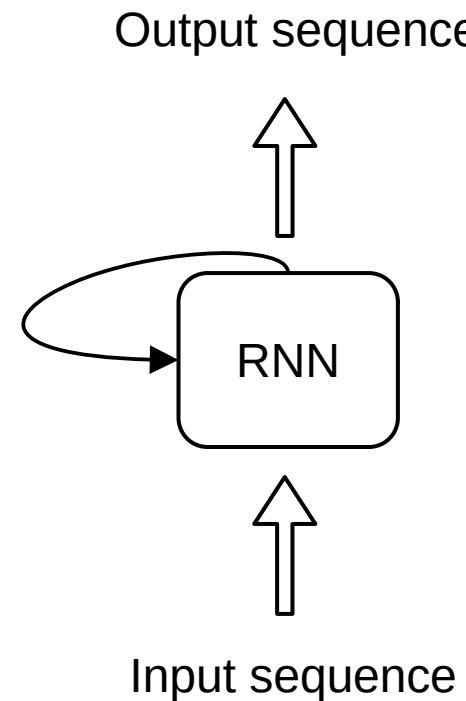
# Recurrent Neural Network (RNN)



# Recurrent Neural Network (RNN)



# Recurrent Neural Network (RNN)

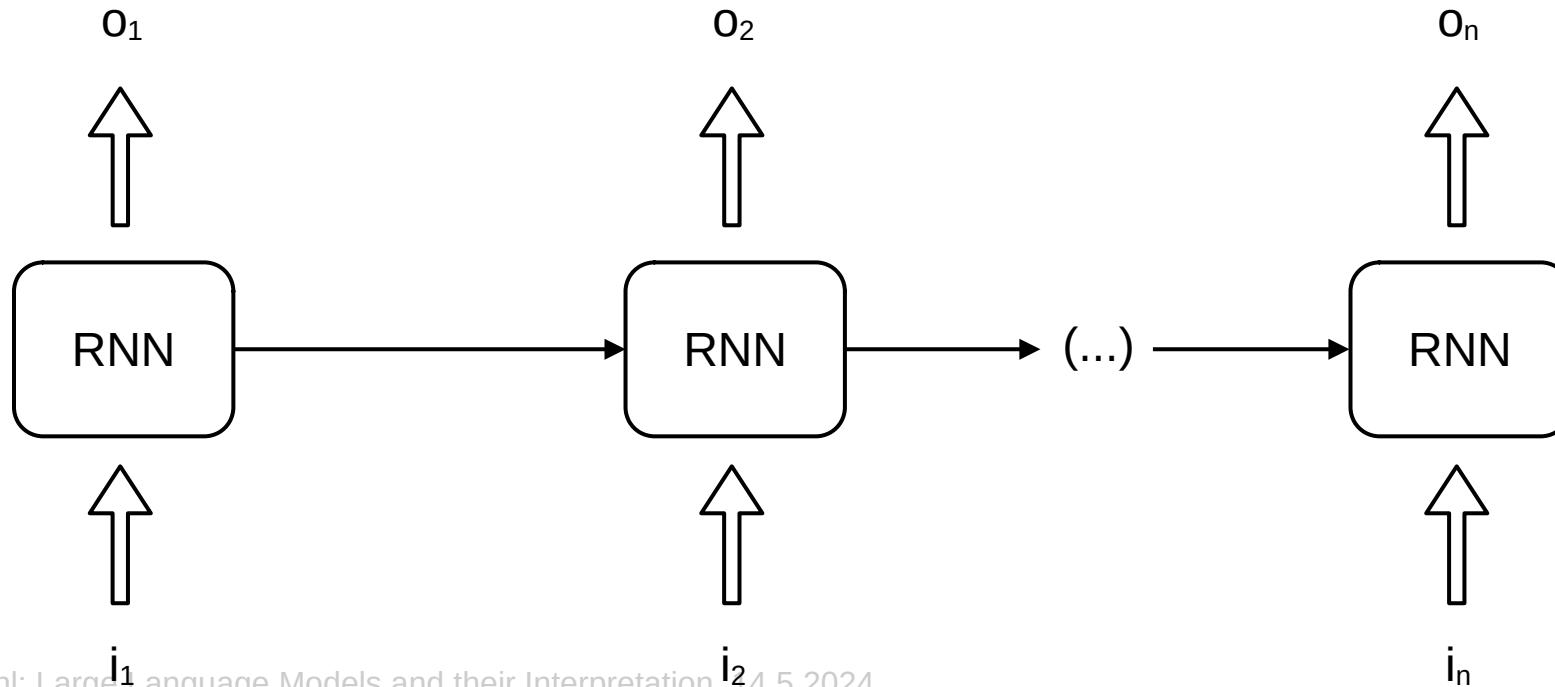


# Encoder-decoder RNNs + Attention

# Encoder-decoder RNN

## Basic RNN maps inputs to outputs 1-1

- Part-of-speech tagging
- Spelling correction
- (...)



# Encoder-decoder RNN

## Basic RNN maps inputs to outputs 1-1

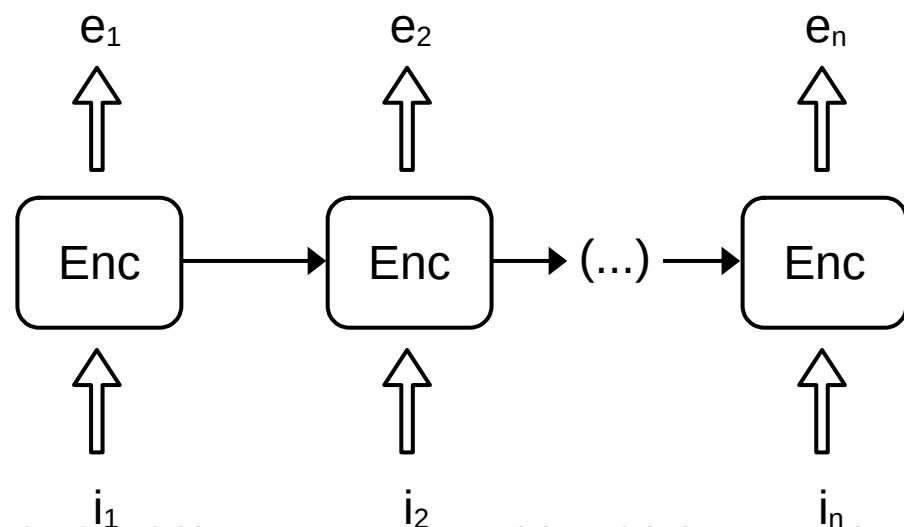
- Part-of-speech tagging
- Spelling correction
- (...)

## But we often want more flexible input-output mappings: e.g. machine translation

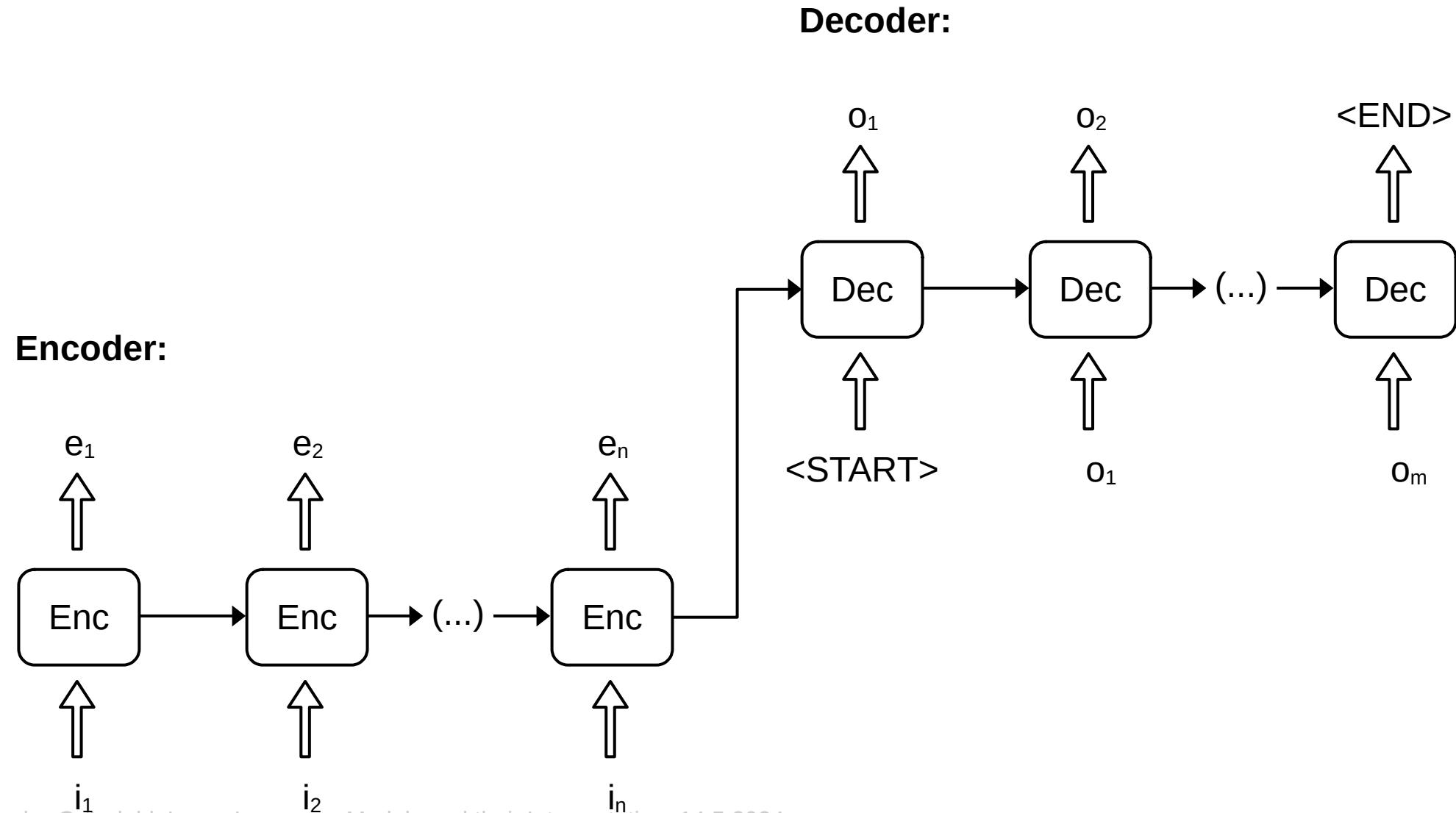
- Grammatical and lexical variation → different number of words between sentences
- Word-order variation
- (...)

# Encoder-decoder RNN

**Encoder:**



# Encoder-decoder RNN



# Vanishing gradient

## Problem

- Older encoder inputs have less effect than more recent ones
- Harder to find long-distance dependencies

*The **dog** that chased two cats **is** brown*

# Vanishing gradient

## Problem

- Older encoder inputs have less effect than more recent ones
- Harder to find long-distance dependencies

*The **dog** that chased two cats **is** brown*

## Long short-term memory (LSTM)

- More complex RNN to alleviate the vanishing gradient problem
- Two distinct hidden states updated differently, allowing better retention of information

# Vanishing gradient

## Problem

- Older encoder inputs have less effect than more recent ones
- Harder to find long-distance dependencies

*The **dog** that chased two cats **is** brown*

## Long short-term memory (LSTM)

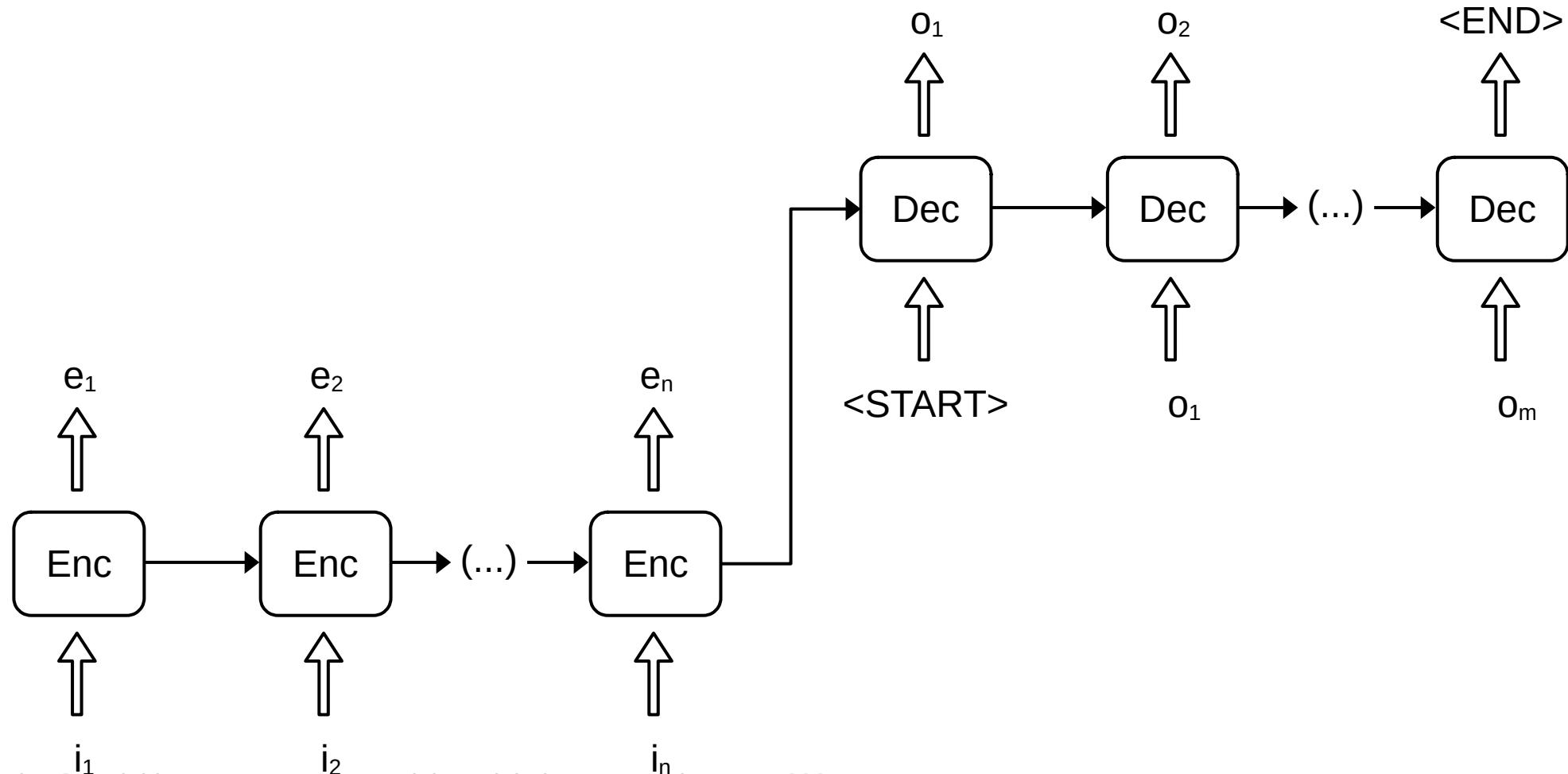
- More complex RNN to alleviate the vanishing gradient problem
- Two distinct hidden states updated differently, allowing better retention of information
- *Bidirectional* LSTMs: reading input from front-to-back and back-to-front, combining results
- Gated recurrent unit (GRU): similar to LSTM but simpler

# Vanishing gradient

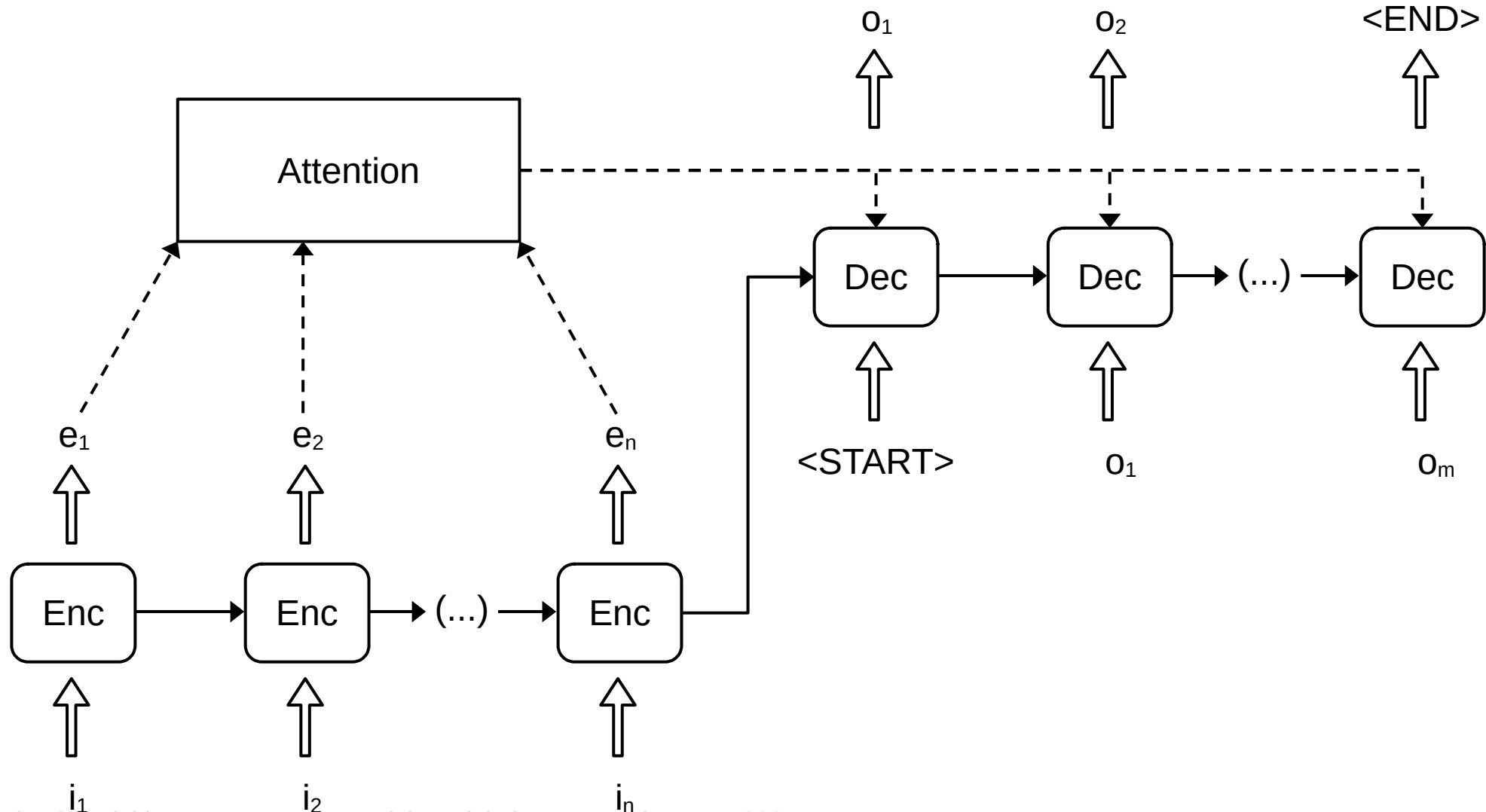
## Attention

- Calculates a probability distribution across all encoding steps
- Combines all encoder outputs weighted by the probability distribution
- Using the result as additional decoder input

# Encoder-decoder RNN



# Encoder-decoder RNN + Attention



# Transformer

# Transformer

---

## Attention Is All You Need

---

**Ashish Vaswani\***  
Google Brain  
avaswani@google.com

**Noam Shazeer\***  
Google Brain  
noam@google.com

**Niki Parmar\***  
Google Research  
nikip@google.com

**Jakob Uszkoreit\***  
Google Research  
usz@google.com

**Llion Jones\***  
Google Research  
llion@google.com

**Aidan N. Gomez\* †**  
University of Toronto  
aidan@cs.toronto.edu

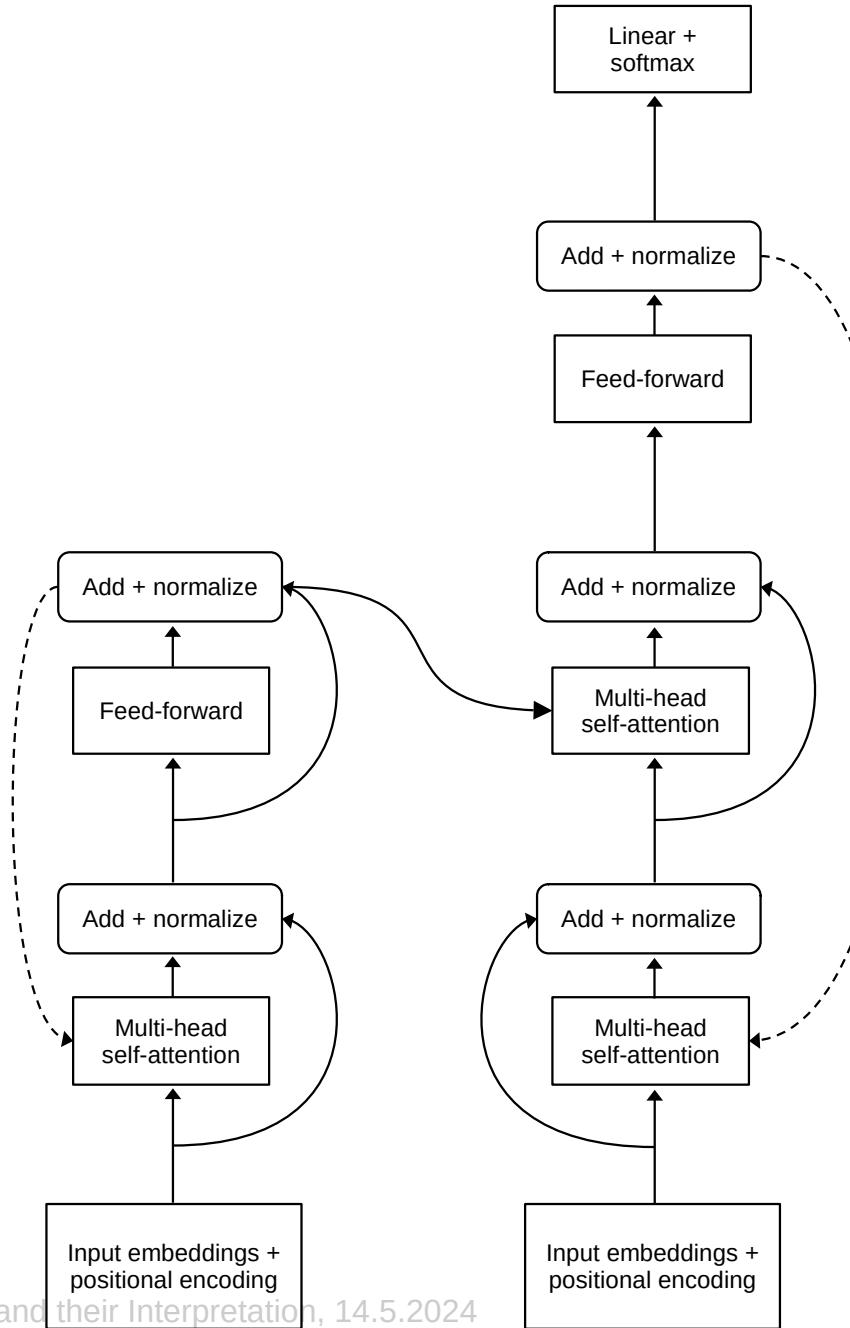
**Lukasz Kaiser\***  
Google Brain  
lukaszkaiser@google.com

**Illia Polosukhin\* †**  
illia.polosukhin@gmail.com

### Abstract

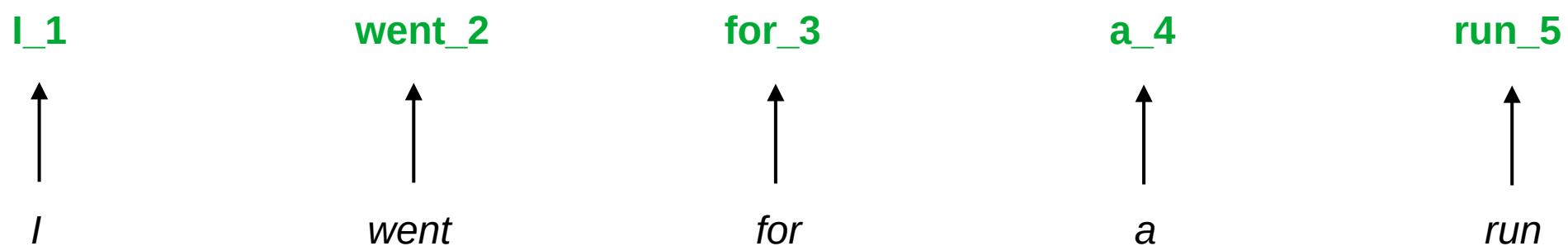
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

# Transformer



# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

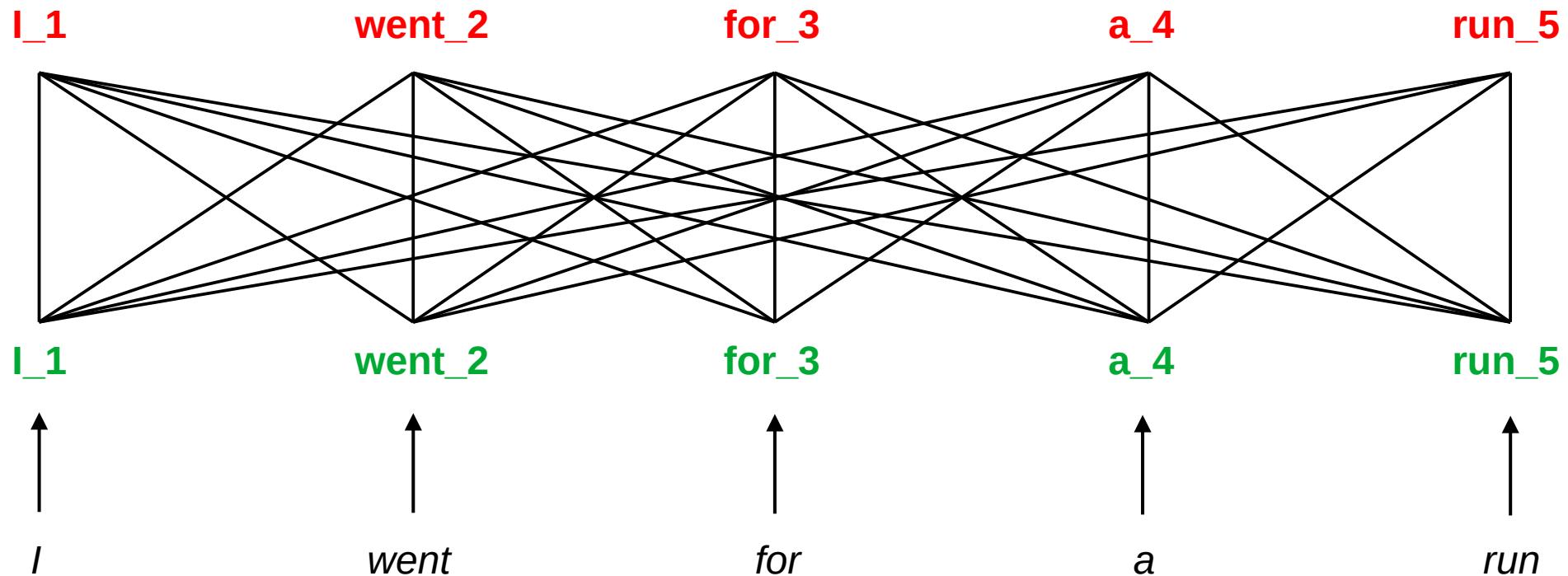


# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

Input goes through **multi-head self-attention**, creating new **contextual encodings** for each token.

Contextual encoding for each token is calculated from previous embeddings of each token.



# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

Input embeddings +  
positional encoding

# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

Each Transformer layer contains (several) **attention heads**.

An attention head contains three weight matrices:

query weights:  $W_q$

key weights:  $W_k$

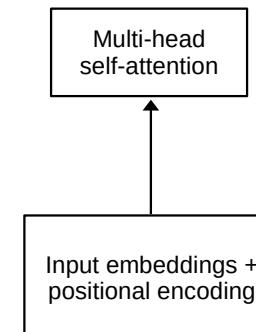
value weights:  $W_v$

Input embedding  $x_i$  is multiplied by each matrix, which yields:

query-vector:  $q_i = x_i W_q$

key-vector:  $k_i = x_i W_k$

value-vector:  $v_i = x_i W_v$



# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

Each Transformer layer contains (several) **attention heads**.

An attention head contains three weight matrices:

query weights:  $W_q$

key weights:  $W_k$

value weights:  $W_v$

Input embedding  $x_i$  is multiplied by each matrix, which yields:

query-vector:  $q_i = x_i W_q$

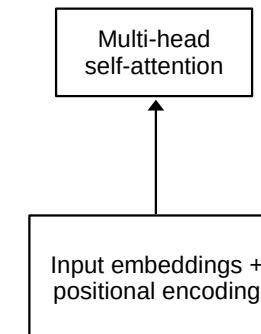
key-vector:  $k_i = x_i W_k$

value-vector:  $v_i = x_i W_v$

**Attention** between inputs  $i$  and  $j$ :

$$a_{ij} = \text{softmax}\left(\frac{q_i \cdot k_j}{\sqrt{d_k}}\right) \quad (d_k = \text{dimensionality of } k_j)$$

Output for input  $i$  = sum of all  $v_j$  weighted with  $a_{ij}$   
**(contextual encoding)**



# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

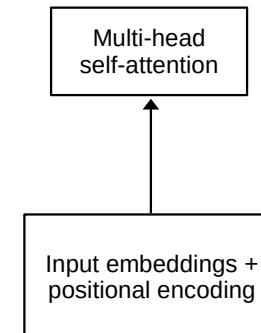
**Multi-head self-attention:**

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$Q$ : query matrix

$K$ : key matrix

$V$ : value matrix

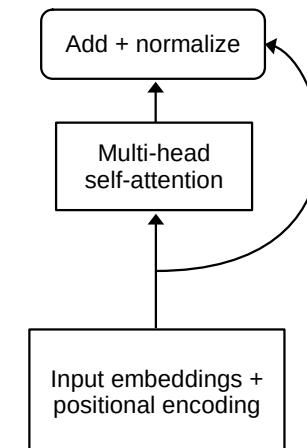


# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

Input goes through **multi-head self-attention**.

Outputs of attention heads are combined  
(+ **residual connections**).



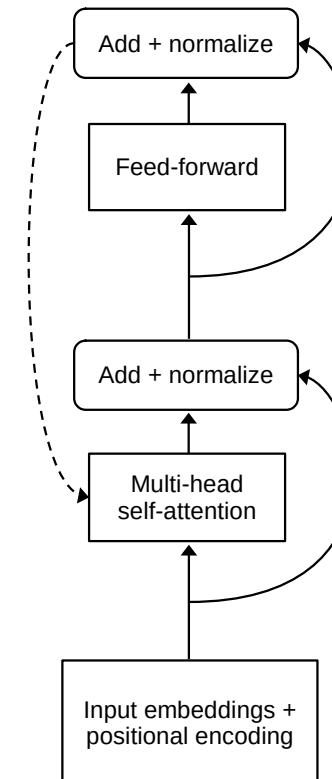
# Transformer

Each input word has an **embedding**, which is combined with **positional encoding**.

Input goes through **multi-head self-attention**.

Outputs of attention heads are combined  
(+ **residual connections**).

Output functions as input to a **feed-forward** network  
(+ **residual connections**).

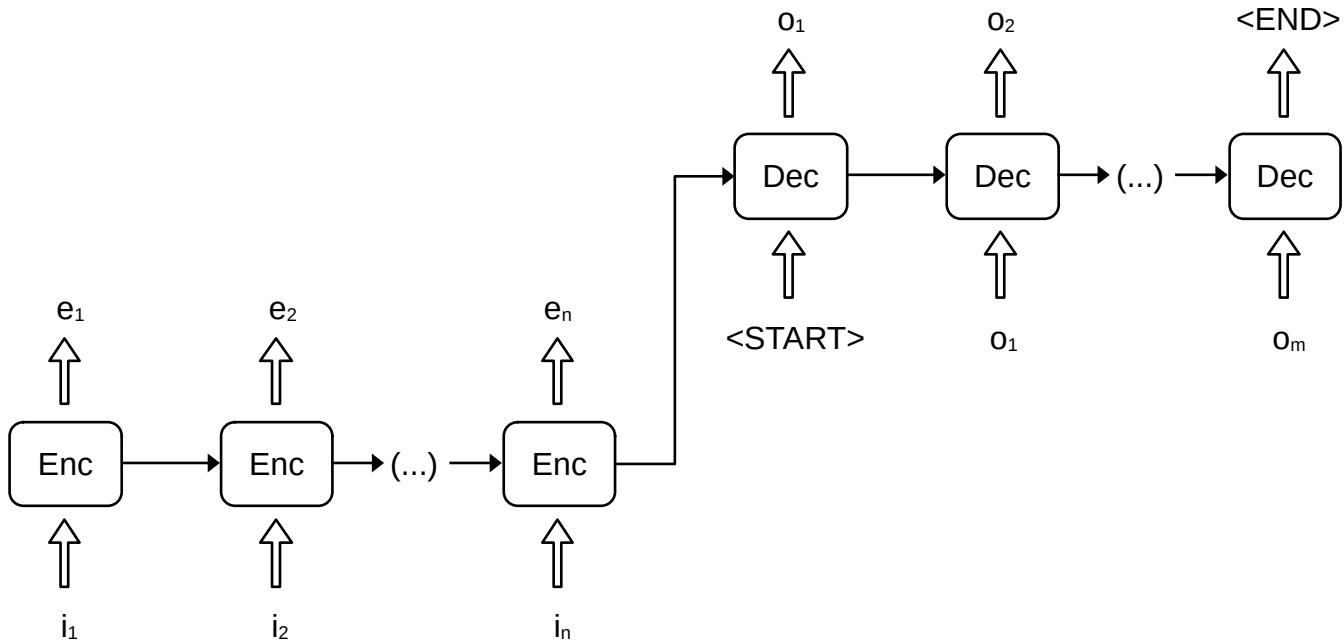
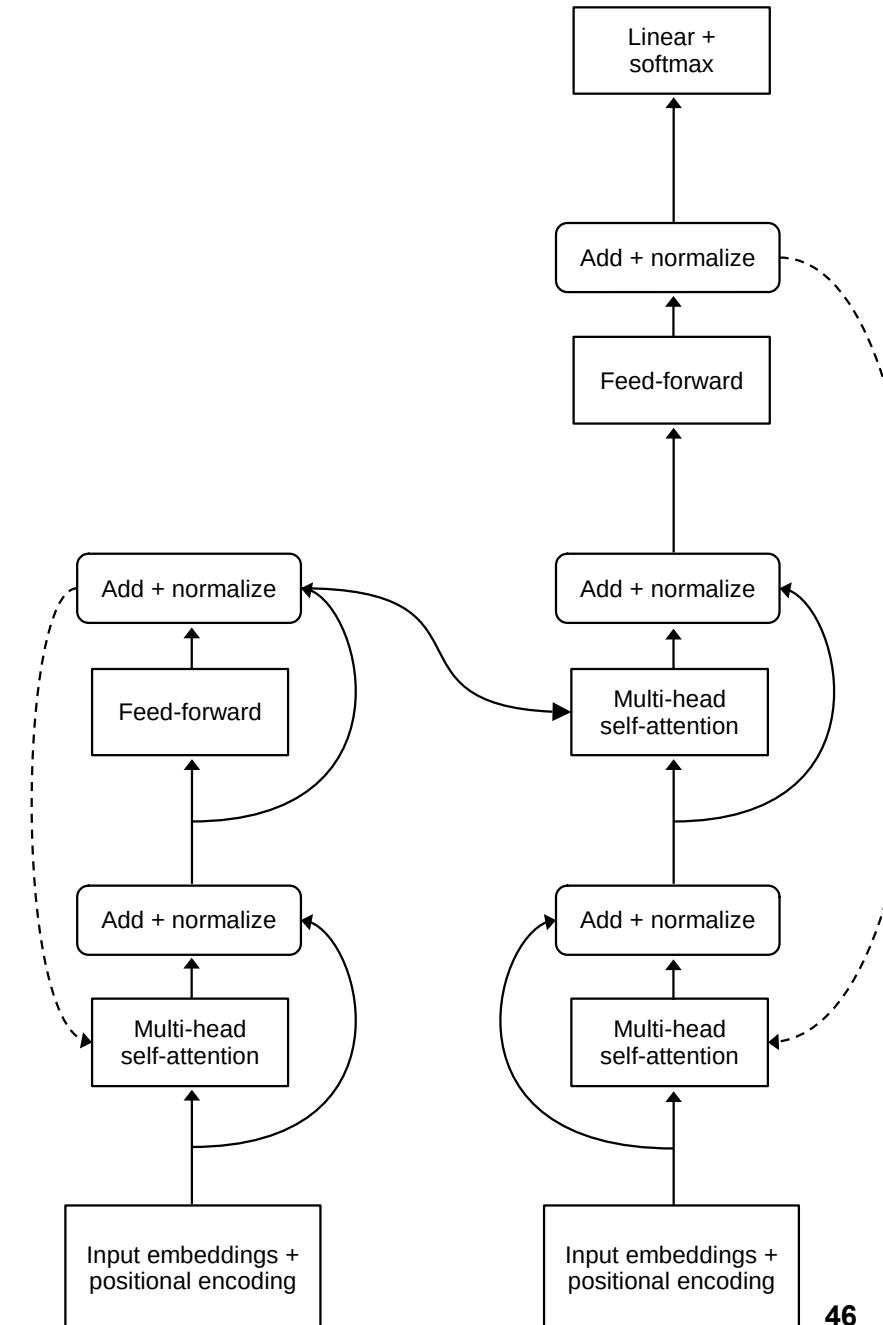


# Transformer

**Encoder-decoder Transformer:** the decoder is like the encoder, but gets additional input via **encoder-decoder attention**



# RNN vs. Transformer?



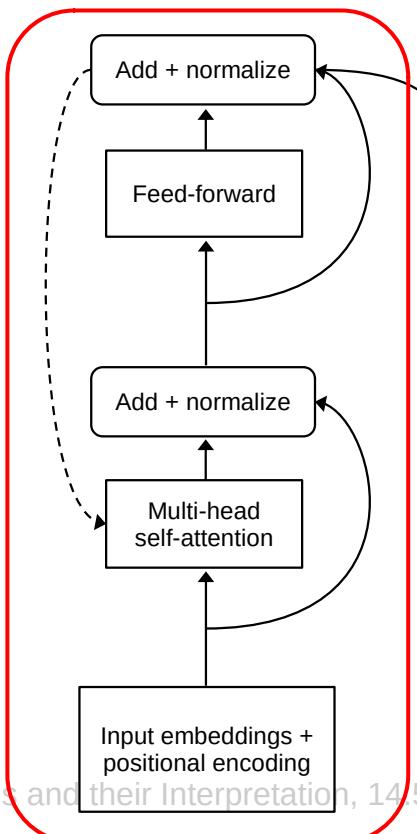
# RNN vs. Transformer?

| RNN                                                                                         | Transformer                                                                      |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Based on recurrent connections                                                              | No recurrent connections                                                         |
| Attention is a useful addition                                                              | Fully Attention-based                                                            |
| Goes through the input one token at a time<br>Input goes through multi-head self-attention. | Goes through all tokens in parallel                                              |
| Generates one representation of the whole input (last encoding step)                        | Generates a separate encoding for each input token                               |
| Order between tokens arises indirectly via processing steps                                 | Positional encoding added to each input token separately                         |
| Long-distance dependencies are especially challenging (vanishing gradient)                  | Distance between tokens has no direct impact on the strength of their connection |

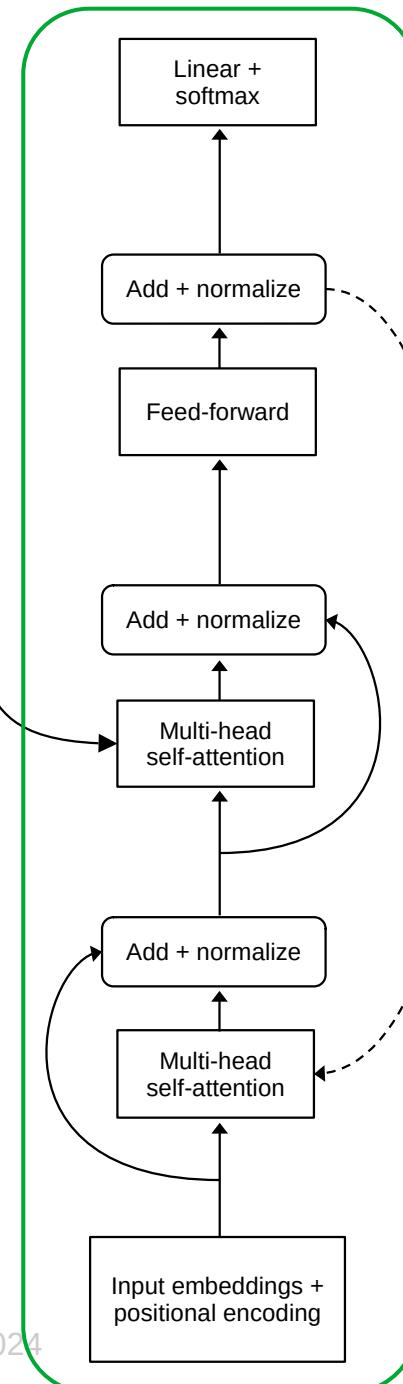
# Large Language Models (LLMs)

# Popular LLMs

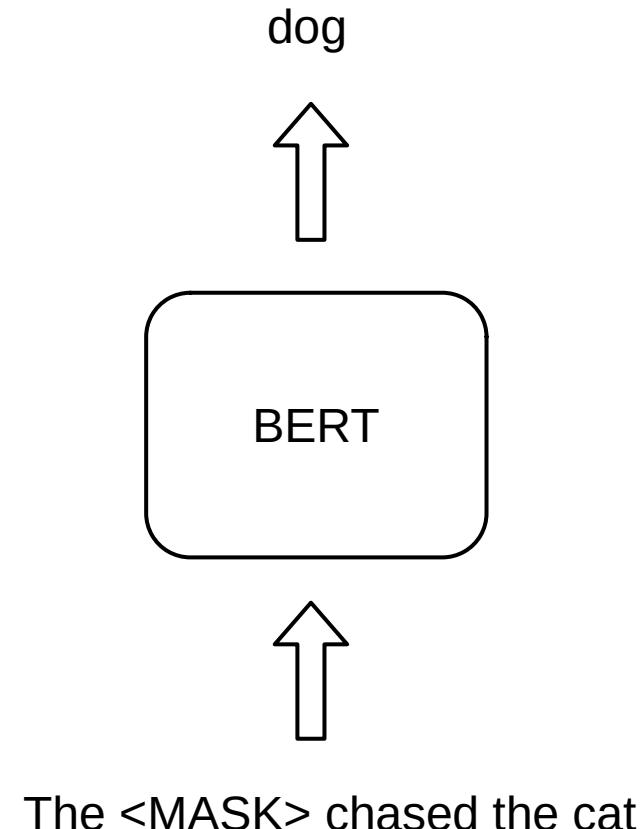
**BERT: encoder**



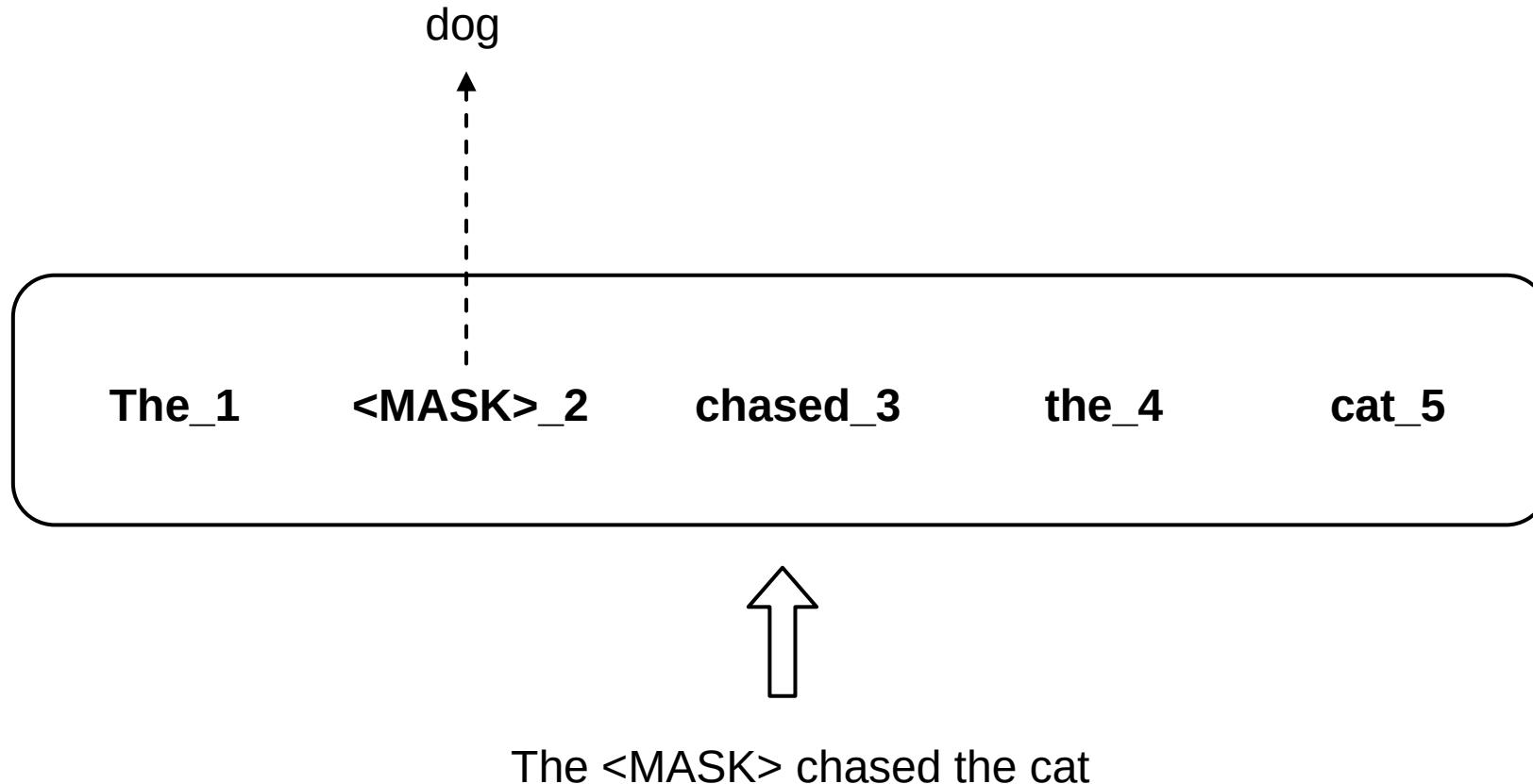
**GPT: decoder**



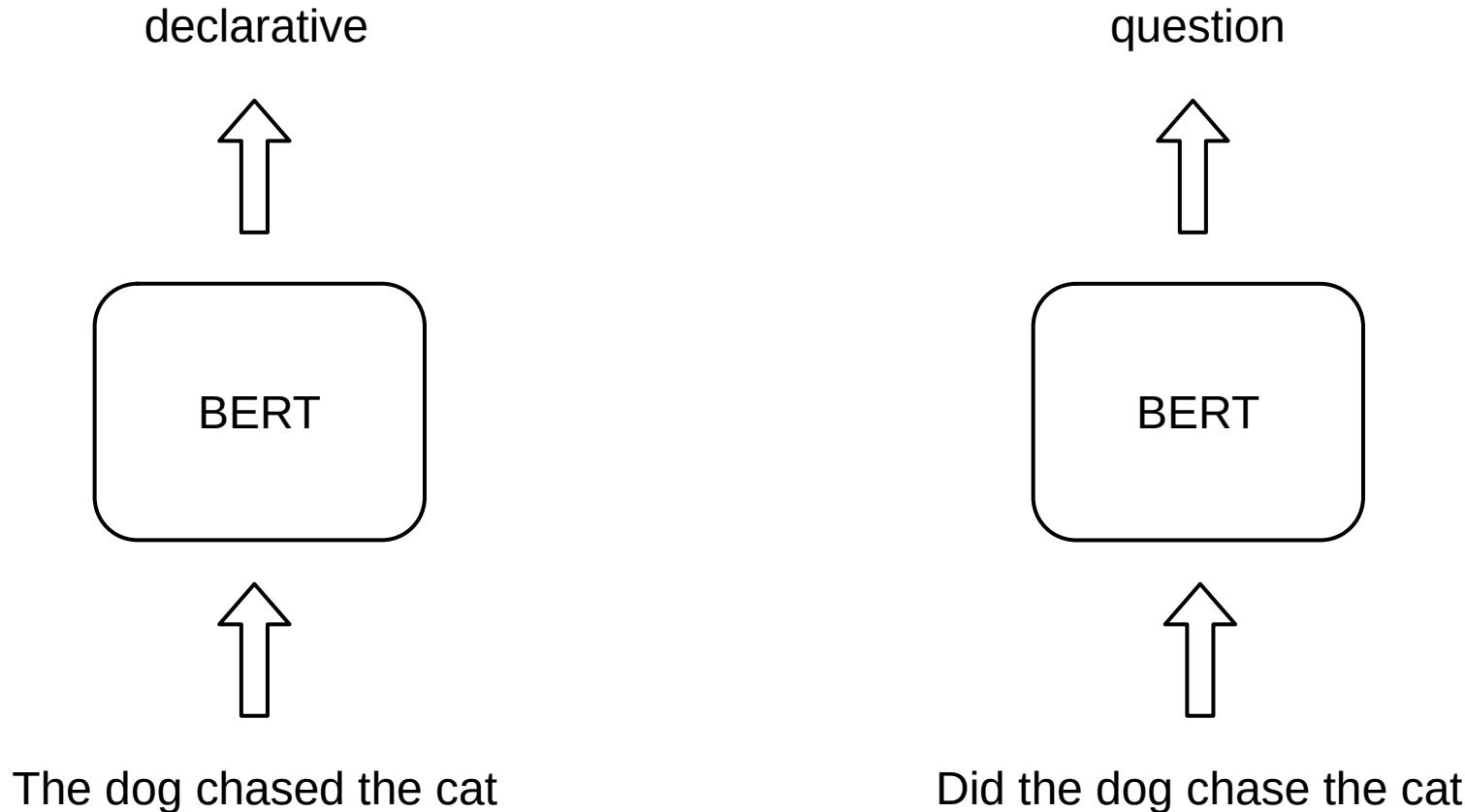
# BERT: predicting masked tokens



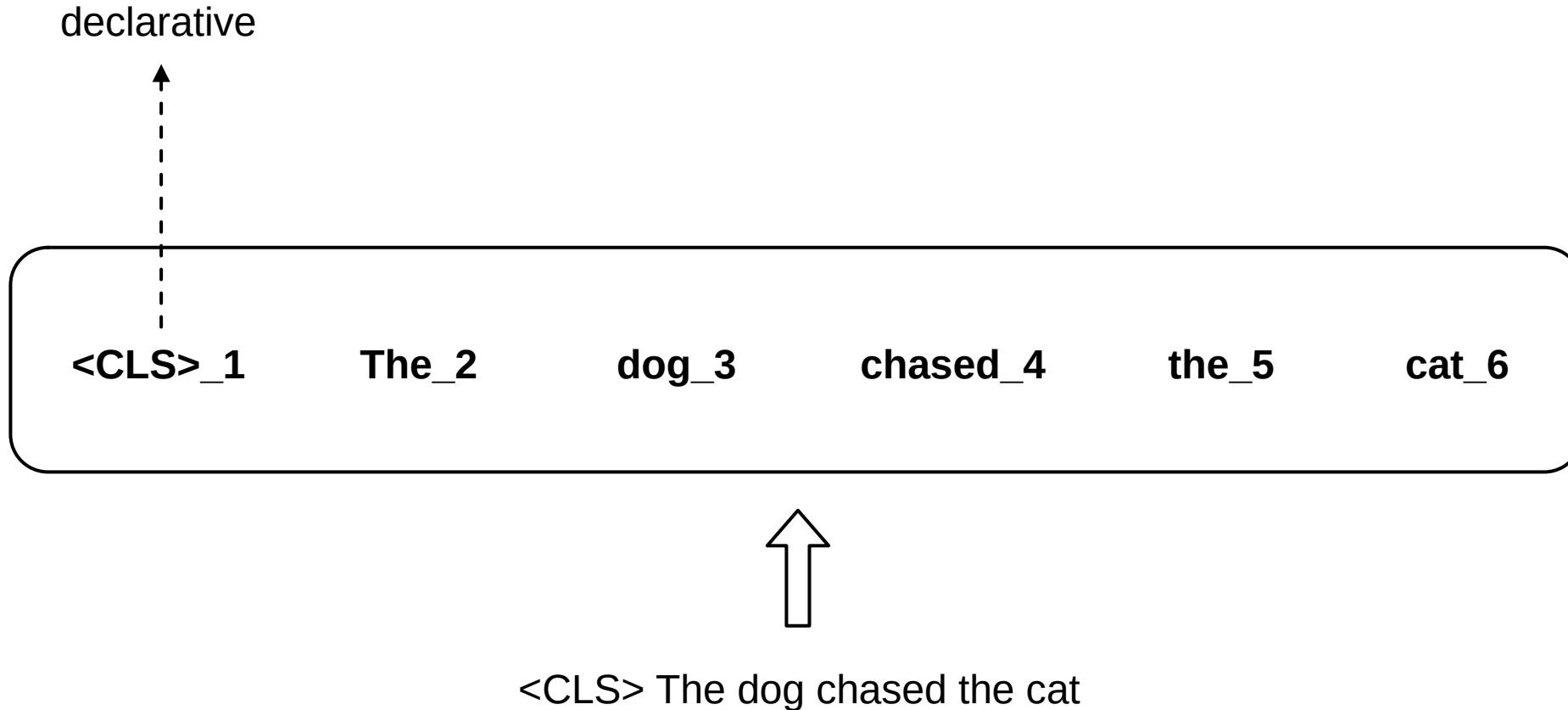
# BERT: predicting masked tokens



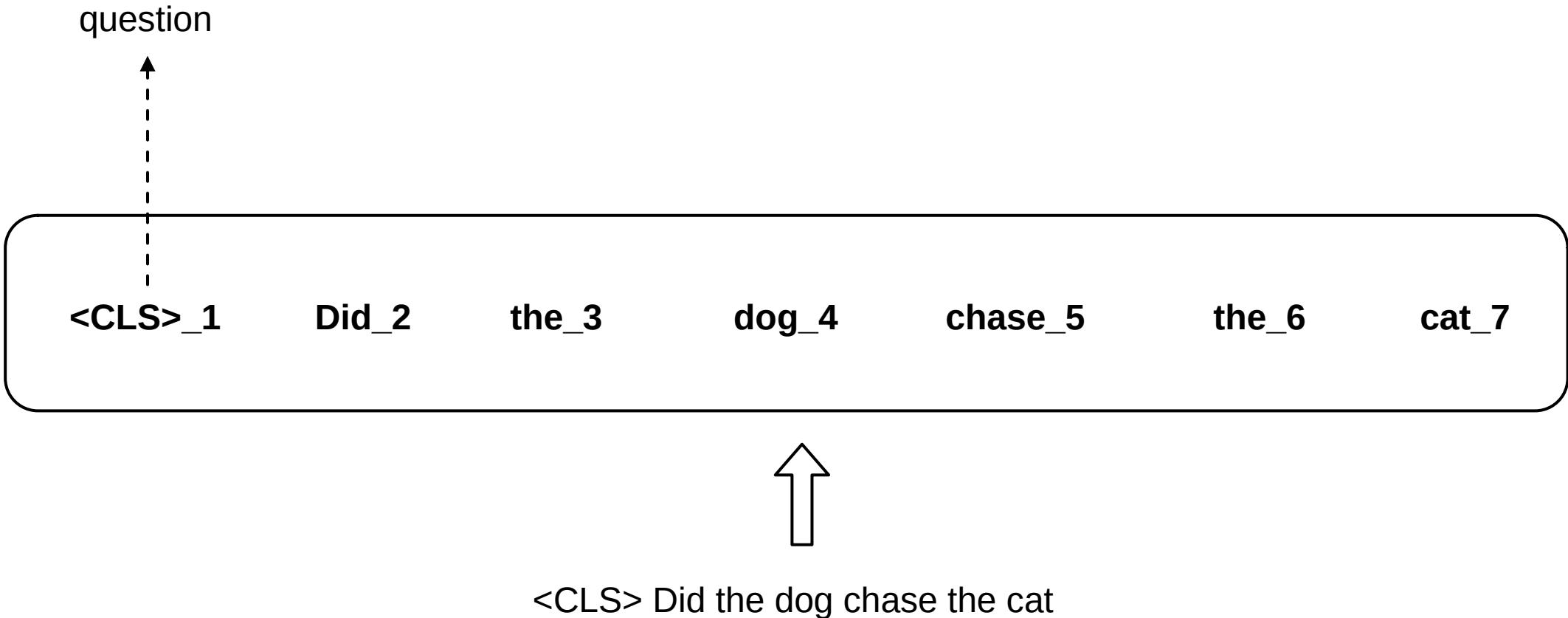
# BERT: classifying whole texts



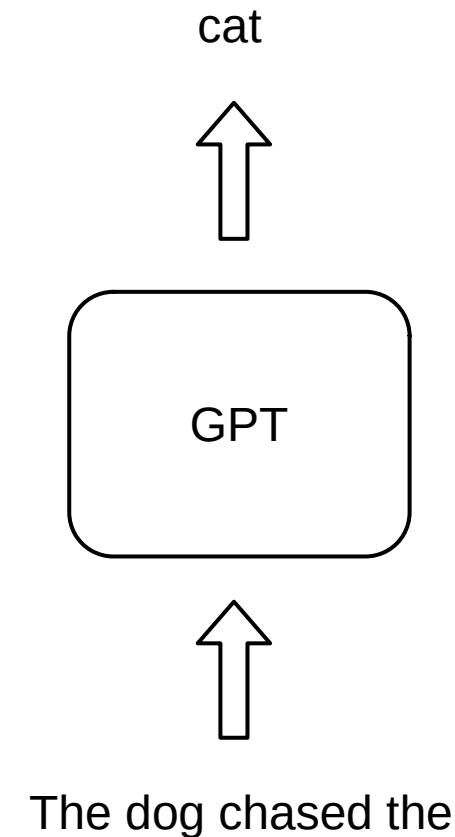
# BERT: classifying whole texts



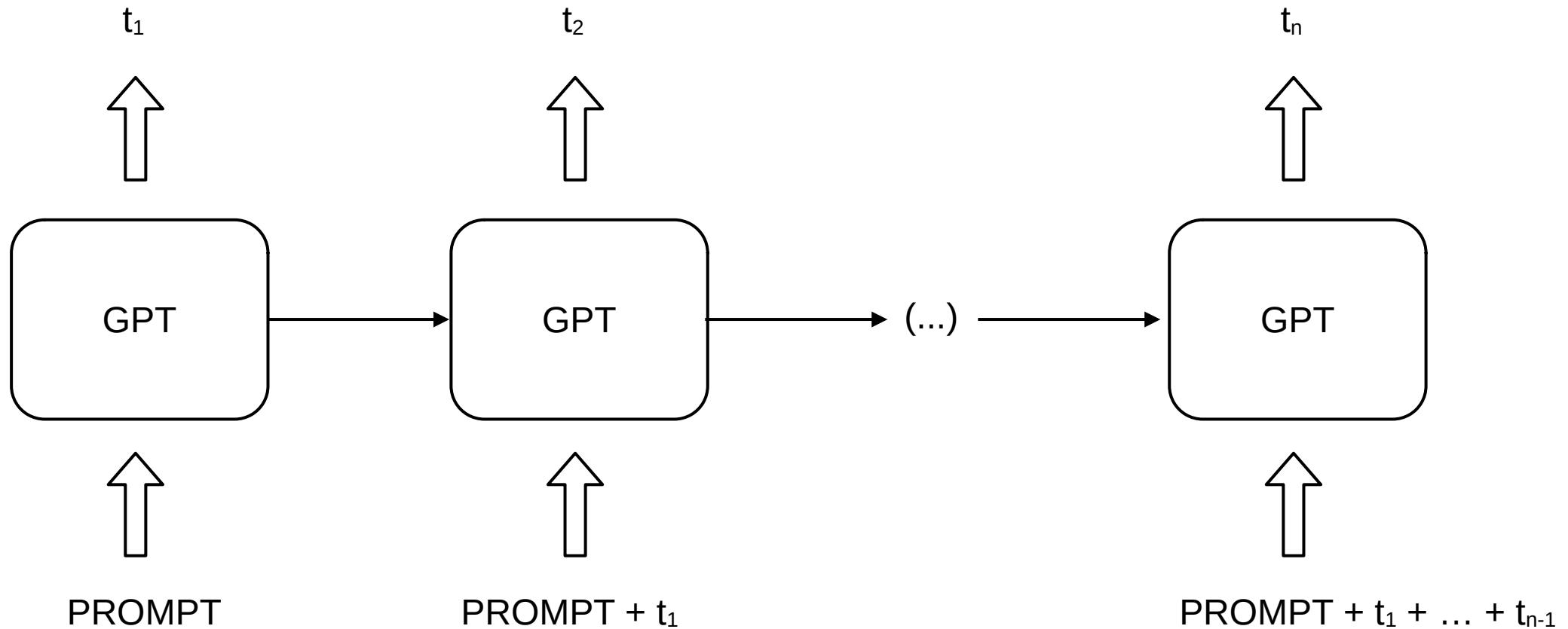
# BERT: classifying whole texts



# GPT: predicting the next token



# GPT: predicting the next token



# BERT vs. GPT

| <b>BERT</b><br><i>(Bidirectional Encoder Representations from Transformers)</i> |                          | <b>GPT</b><br><i>(Generative Pre-trained Transformer)</i> |
|---------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|
| <b>Architecture</b>                                                             | Transformer-encoder      | Transformer-decoder                                       |
| <b>Input</b>                                                                    | Text                     | Prompt + prior output                                     |
| <b>Output</b>                                                                   | Encoding of each token   | Next token                                                |
| <b>Training</b>                                                                 | Predicting masked tokens | Predicting upcoming text                                  |

# LLM variants

| Comparison                                        | BERT<br>October 11, 2018                       | RoBERTa<br>July 26, 2019                       | DistilBERT<br>October 2, 2019                     | ALBERT<br>September 26, 2019                 |
|---------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| Parameters                                        | Base: 110M<br>Large: 340M                      | Base: 125<br>Large: 355                        | Base: 66                                          | Base: 12M<br>Large: 18M                      |
| Layers / Hidden Dimensions / Self-Attention Heads | Base: 12 / 768 / 12<br>Large: 24 / 1024 / 16   | Base: 12 / 768 / 12<br>Large: 24 / 1024 / 16   | Base: 6 / 768 / 12                                | Base: 12 / 768 / 12<br>Large: 24 / 1024 / 16 |
| Training Time                                     | Base: 8 x V100 x 12d<br>Large: 280 x V100 x 1d | 1024 x V100 x 1 day<br>(4-5x more than BERT)   | Base: 8 x V100 x 3.5d<br>(4 times less than BERT) | [not given]<br>Large: 1.7x faster            |
| Performance                                       | Outperforming SOTA in Oct 2018                 | 88.5 on GLUE                                   | 97% of BERT-base's performance on GLUE            | 89.4 on GLUE                                 |
| Pre-Training Data                                 | BooksCorpus + English Wikipedia = 16 GB        | BERT + CCNews + OpenWebText + Stories = 160 GB | BooksCorpus + English Wikipedia = 16 GB           | BooksCorpus + English Wikipedia = 16 GB      |
| Method                                            | Bidirectional Transformer, MLM & NSP           | BERT without NSP, Using Dynamic Masking        | BERT Distillation                                 | BERT with reduced parameters & SOP (not NSP) |

| Model | Launch Date   | Training Data                                                  | No. of Parameters            | Max. Sequence Length |
|-------|---------------|----------------------------------------------------------------|------------------------------|----------------------|
| GPT-1 | June 2018     | Common Crawl, BookCorpus                                       | 117 million                  | 1024                 |
| GPT-2 | February 2019 | Common Crawl, BookCorpus, WebText                              | 1.5 billion                  | 2048                 |
| GPT-3 | June 2020     | Common Crawl, BookCorpus, Wikipedia, Books, Articles, and more | 175 billion                  | 4096                 |
| GPT-4 | March 2023    | Unknown                                                        | Estimated to be in trillions | Unknown              |

<https://360digitmg.com/blog/bert-variants-and-their-differences>

<https://www.makeuseof.com/gpt-models-explained-and-compared/>

# Interpreting LLMs

# Methods

## Behavioral methods

- Measuring the performance of LLMs on linguistically relevant data

# Methods

## Behavioral methods

- Measuring the performance of LLMs on linguistically relevant data
- LSTMs and Transformers learn some long-distance dependencies, but commonly rely on linear order rather than hierarchical structure (Linzen et al. 2016, Yedetore et al. 2023)

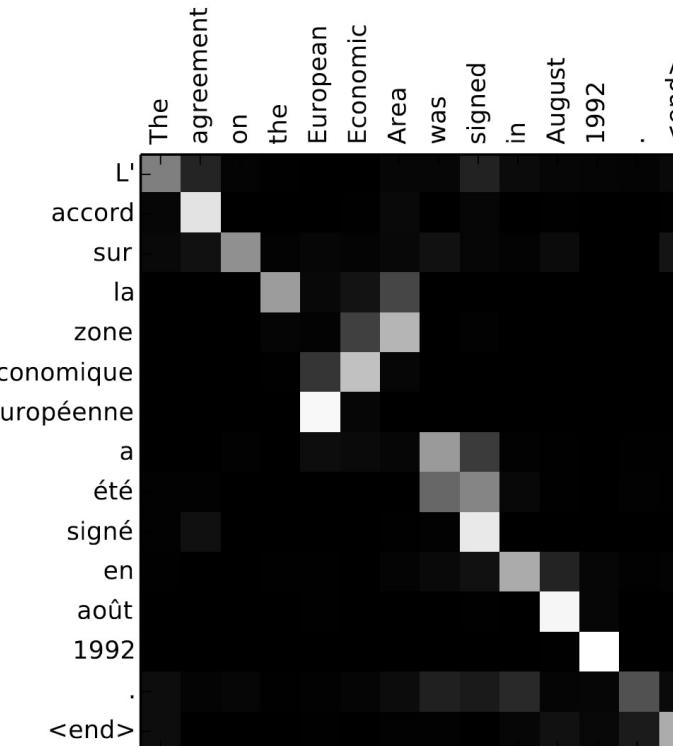
1. The boy who **has** talked can read.
2. Can the boy who **has** talked    read?
3. \***Has** the boy who    talked can read?

(Yedetore et al. 2023)

# Methods

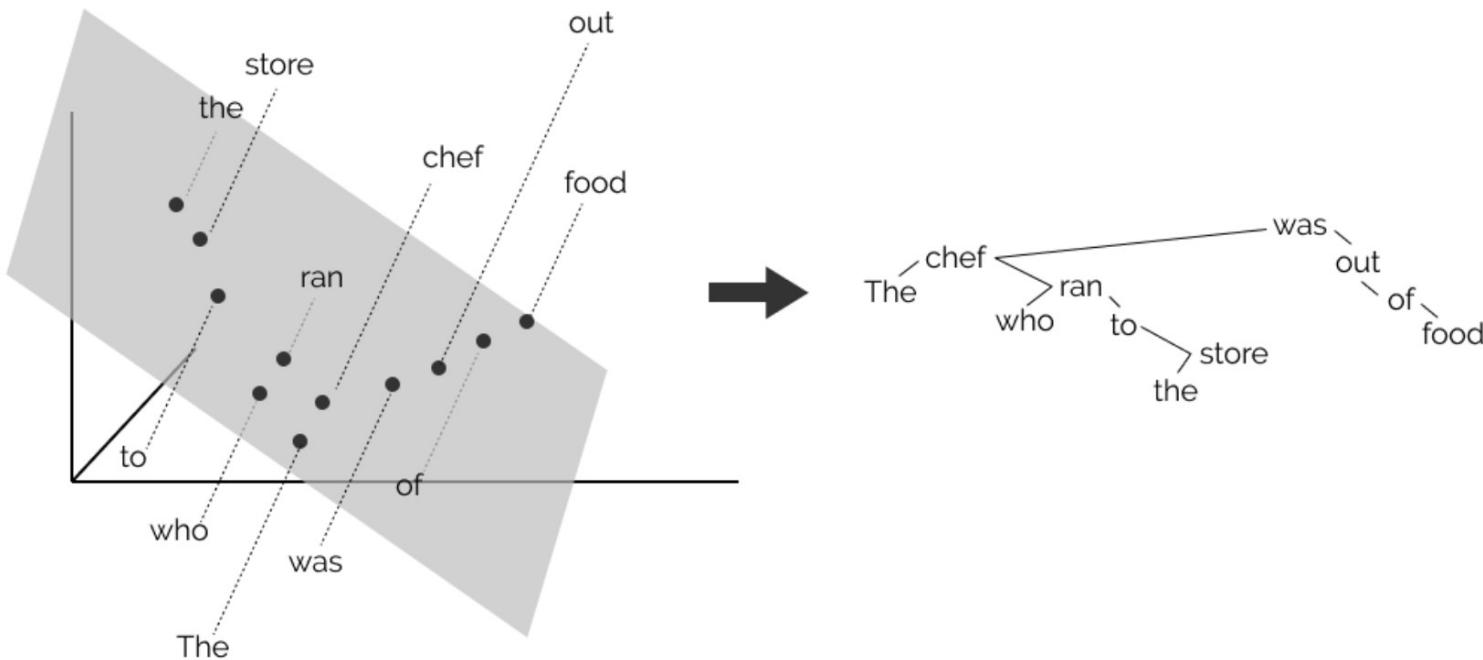
## Attention visualization

- Displaying the allocation of attention for each contextual encoding (Bahdanau et al. 2015)
- Challenge: only concerns the input, not the hidden layers



# Probing

- Mapping embeddings of pre-trained LLMs to linguistic labels

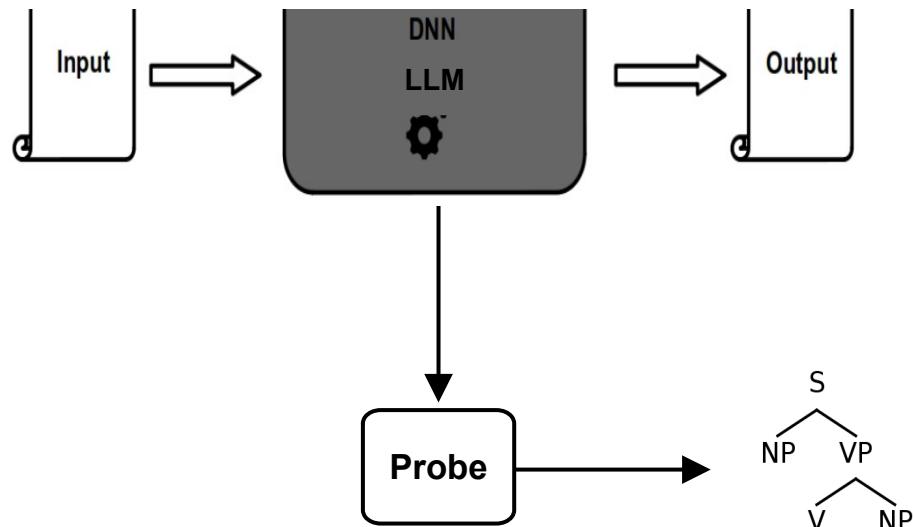


<https://nlp.stanford.edu/~johnhew/structural-probe.html>

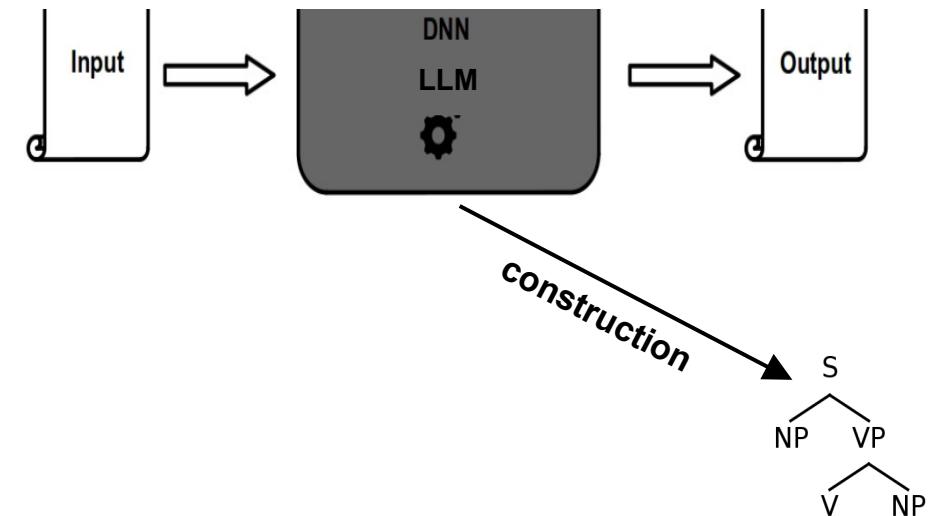
# Probing

- Mapping embeddings of pre-trained LLMs to linguistic labels
- Typically *supervised*: labels obtained from human-made (or rule-based) annotations
- *Parameter-free probing*: unsupervised “bottom-up” alternative (Wu et al. 2020)

**Supervised:**



**Parameter-free:**



# “BERTology” (Rogers et al. 2020)

## Grammatical specialization of layers (Tenney et al. 2019, Manning et al. 2020)

- Early layers: superficial information (e.g. part-of-speech, word-order)
- Middle layers: syntactic structure
- Late layers: abstract semantics (e.g. argument structure)

What does BERT learn about the structure of language?

Ganesh Jawahar      Benoît Sagot      Djamé Seddah  
Inria, France  
`{firstname.lastname}@inria.fr`

BERT Rediscovers the Classical NLP Pipeline

Ian Tenney<sup>1</sup>   Dipanjan Das<sup>1</sup>   Ellie Pavlick<sup>1,2</sup>  
<sup>1</sup>Google Research   <sup>2</sup>Brown University  
`{ittenney,dinanid,ellie}@google.com`

Finding Universal Grammatical Relations in Multilingual BERT

Ethan A. Chi, John Hewitt, and Christopher D. Manning  
Department of Computer Science  
Stanford University  
`{ethanchi, johnhew, manning}@cs.stanford.edu`



# “BERTology” (Rogers et al. 2020)

## Grammatical specialization of layers (Tenney et al. 2019, Manning et al. 2020)

- Early layers: superficial information (e.g. part-of-speech, word-order)
- Middle layers: syntactic structure
- Late layers: abstract semantics (e.g. argument structure)
  - Semantics can also be distributed across layers (Tenney et al. 2019)

What does BERT learn about the structure of language?

Ganesh Jawahar      Benoît Sagot      Djamé Seddah  
Inria, France  
`{firstname.lastname}@inria.fr`

BERT RedisCOVERS the Classical NLP Pipeline

Ian Tenney<sup>1</sup>   Dipanjan Das<sup>1</sup>   Ellie Pavlick<sup>1,2</sup>  
<sup>1</sup>Google Research   <sup>2</sup>Brown University  
`{ittenney,dinanid,ellie}@google.com`

Finding Universal Grammatical Relations in Multilingual BERT

Ethan A. Chi, John Hewitt, and Christopher D. Manning  
Department of Computer Science  
Stanford University  
`{ethanchi, johnhew, manning}@cs.stanford.edu`



# “BERTology” (Rogers et al. 2020)

## Syntactic structure

- Probably not directly in attention heads (Htut et al. 2019)
- But encodings can be used to construct syntax (Hewitt & Manning 2019, Wu et al. 2020)
- BERT is sensitive to grammatical relations such as agreement (Goldberg 2019)
- But changing word-order or removing arguments doesn’t always have an effect (Ettinger 2019)

## Semantic information

- Thematic roles partly reconstructable via probing (Tenney et al. 2019)
- Challenges with e.g. names and numbers (Wallace et al. 2019, Balasubramanian et al. 2020)

## “World knowledge”

- LLMs succeed at certain pragmatic reasoning tasks (Petroni et al. 2019)
- Difficulties with tasks that require multi-step reasoning (Forbes et al. 2019)

# Challenges (Kulmizev & Nivre 2022)

## Grammar vs. “coding properties”

- Syntactic relations (e.g. “subject”) can be coded by word-order, agreement, etc.

## Assumptions about grammatical formalism

- Choice of formalism impacts probing results (Kulmizev et al. 2020)

## Separating variables

- Data, model architecture, task, linguistic phenomenon

## Specifying research questions

- What does the model learn?
- What could the model learn?
- What *must* the model learn?

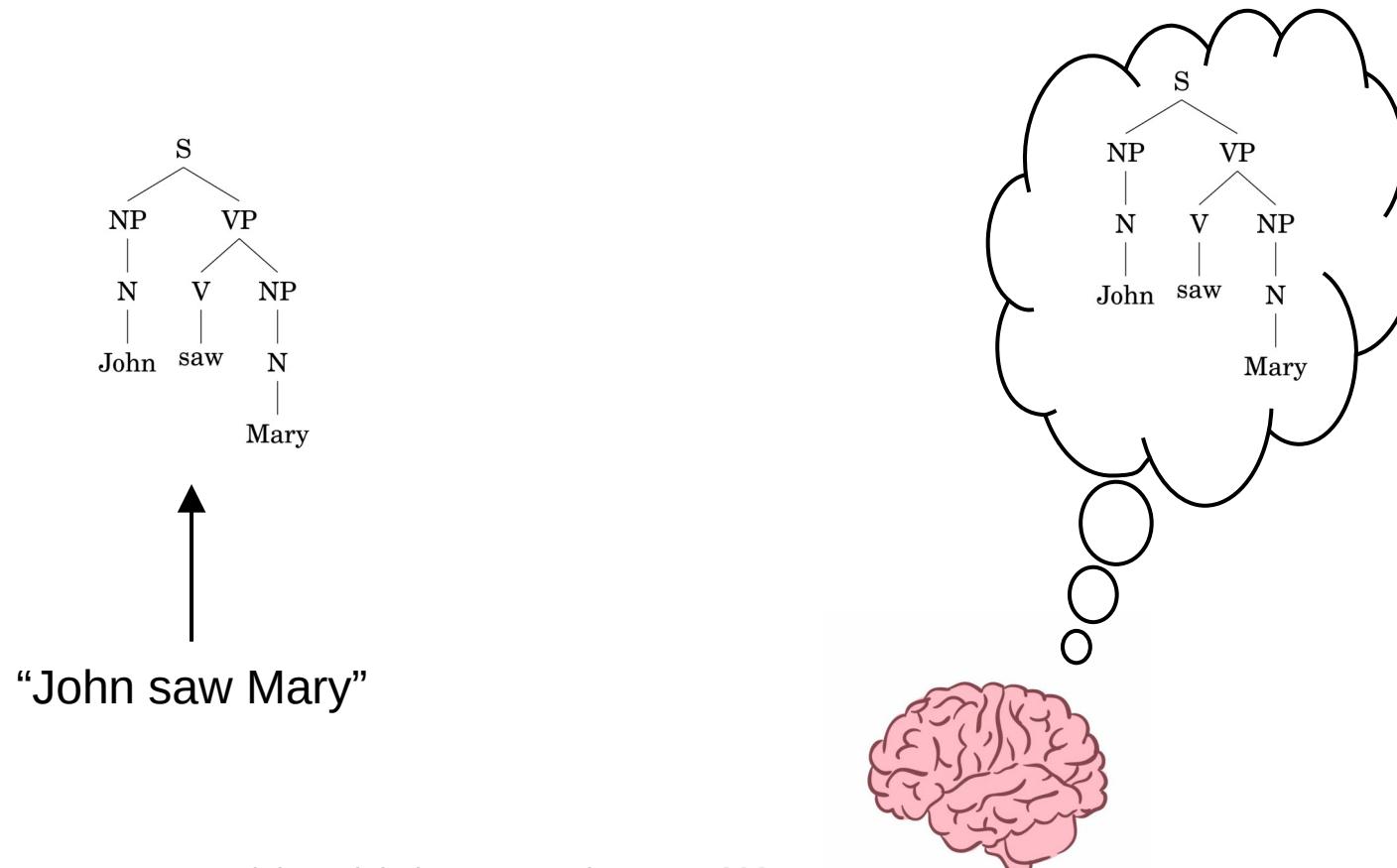
# Challenges (Kulmizev & Nivre 2022)

“(...) hypotheses, methodologies, and conclusions comprise many conflicting insights, giving rise to a paradoxical picture reminiscent of Schrödinger's cat – where syntax appears to be simultaneously dead and alive inside the black box models.”

# Challenges (my work)

## Ambiguity of “linguistic representation” (Buder-Gröndahl 2023)

- Are linguistic properties in the *data* or in *cognition*?



# Challenges (my work)

## Ambiguity of “linguistic representation” (Buder-Gröndahl 2023)

- Are linguistic properties in the *data* or in *cognition*?

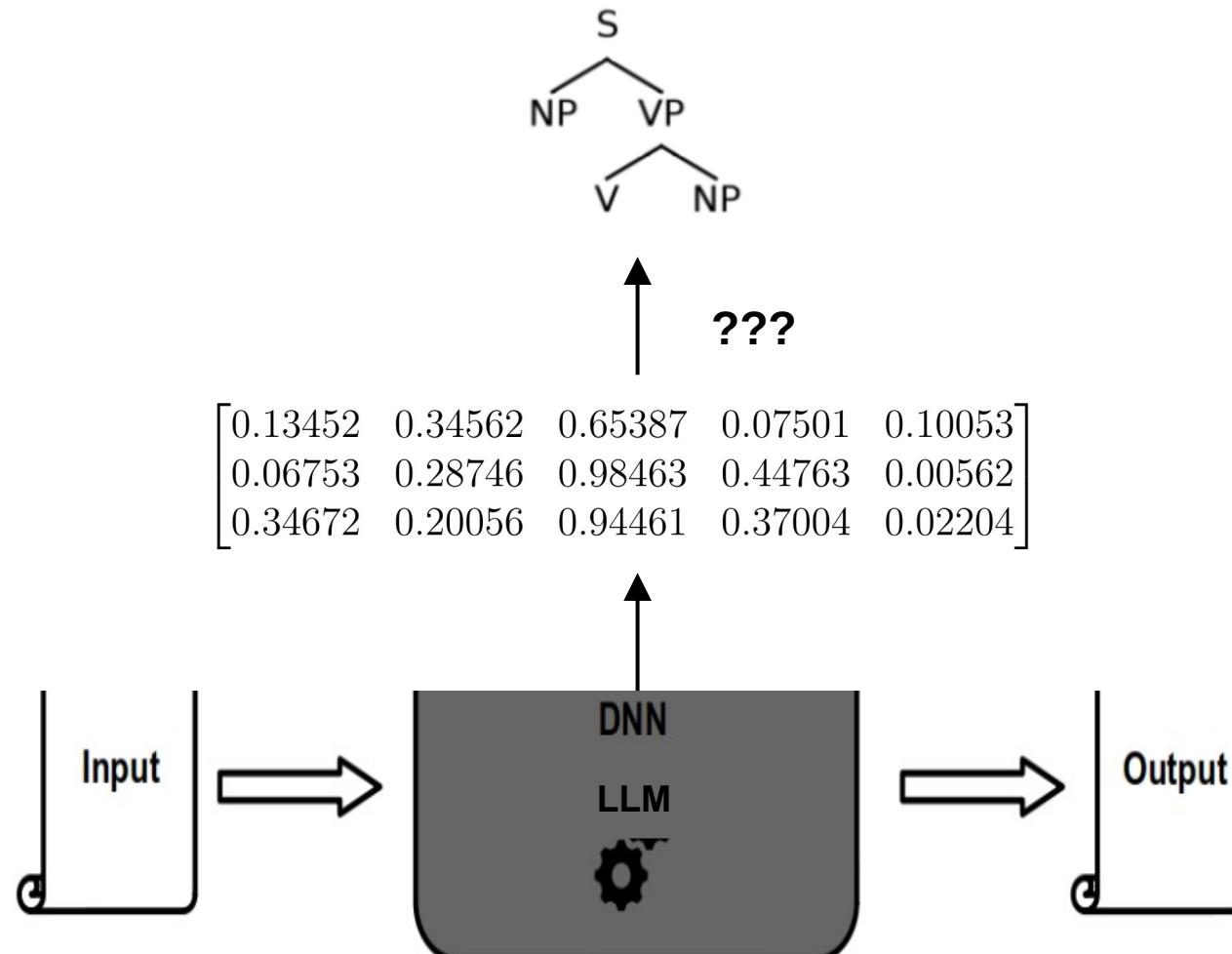
“It remains for linguists to show, in detail, that the speaker has no ‘ideas’, and that the noise is sufficient.”

(Bloomfield, 1936: 93)

It is appropriate, in my opinion, to regard the grammar of L as a representation of fundamental aspects of the knowledge of L possessed by the speaker-hearer who has mastered L.”

(Chomsky, 1975: 5)

# Challenges



# References

Adger, D. (2022). What are linguistic representations? *Mind & Language*, 37 (2), 248–260.

Belinkov, Y., & Glass, J. (2019). Analysis methods in neural language processing: A survey. *Transactions of the Association for Computational Linguistics*, 7 , 49–72.

Chomsky, N. (2012). The science of language. Cambridge: Cambridge University Press.

Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M. (2019). Visualizing and measuring the geometry of BERT. *Proceedings of the 33rd Conference on Neural Information Processing Systems* (p. 8592-8600).

Collins, J. (2023). Internalist priorities in a philosophy of words. *Synthese*, 201 (3), 110.

Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P. (2020). A survey of the state of explainable AI for natural language processing. *Proceedings of the 1st conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing* (pp. 447–459).

Egan, F. (2010). Computation models: a modest role for content. *Studies in History and Philosophy of Science*, 41 (3), 253–259.

Hewitt, J., & Manning, C.D. (2019). A structural probe for finding syntax in word representations. *Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: Human language technologies*, volume 1 (long and short papers) (pp. 4129–4138).

Jawahar, G., Sagot, B., Seddah, D. (2019). What does BERT learn about the structure of language? *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (pp. 3651–3657).

Kovaleva, O., Romanov, A., Rogers, A., Rumshisky, A. (2019). Revealing the dark secrets of BERT. *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing* (pp. 4365–4374).

# References

Kulmizev, A., & Nivre, J. (2022). Schrödinger's tree—on syntax and neural language models. *Frontiers in Artificial Intelligence*, 5.

Kulmizev, A., Ravishankar, V., Abdou, M., Nivre, J. (2020). Do neural language models show preferences for syntactic formalisms? *Proceedings of the 58th annual meeting of the association for computational linguistics* (pp. 4077–4091).

Pinker, S., & Price, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. *Cognition*, 28 (1–2), 73–193.

Putnam, H. (1988). *Representation and reality*. Cambridge: MIT Press.

Rumelhart, D.E., & McClelland, J.L. (1986). On learning the past tenses of English verbs. In J.L. McClelland, D.E. Rumelhart, & T.P.R. Group (Eds.), *Parallel distributed processing: Explorations in the microstructure of cognition: Vol. 2. psychological and biological models* (pp. 216–271). Cambridge: MIT Press.

Searle, J. (1992). *The Rediscovery of the Mind*. Cambridge: MIT Press.

Sprevak, M. (2018). Triviality arguments about computational implementation. In M. Sprevak & M. Colombo (Eds.), *Routledge handbook of the computational mind* (pp. 175–191). London: Routledge.

Swoyer, C. (1991). Structural representation and surrogate reasoning. *Synthese*, 87 (3), 449–508.

Tenney, I., Das, D., Pavlick, E. (2019). BERT rediscovers the classical NLP pipeline. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (pp. 4593–4601).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., . . . Polosukhins, I. (2017). Attention is all you need. *Proceedings of the 31st International Conference on Neural Information Processing* (pp. 6000–6010).

Wu, Z., Chen, Y., Kao, B. and Liu, Q. (2020). Perturbed masking: Parameter-free probing for analyzing and interpreting BERT. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 4166–4176.