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Deep Neural Network (DNN)
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Training a DNN
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Training a DNN
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Recurrent neural networks (RNNs)



Sequential data: influence of context
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Sequential data: influence of context
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Recurrent connections
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Recurrent Neural Network (RNN)
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Encoder-decoder RNNs + Attention



Encoder-decoder RNN

Basic RNN maps inputs to outputs 1-1
* Part-of-speech tagging
* Spelling correction
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Encoder-decoder RNN

Basic RNN maps inputs to outputs 1-1
* Part-of-speech tagging
* Spelling correction

. (...)

But we often want more flexible input-output mappings: e.g. machine translation
* Grammatical and lexical variation — different number of words between sentences
* Word-order variation

. (..)
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Encoder-decoder RNN
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Encoder-decoder RNN
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Vanishing gradient

Problem

* Older encoder inputs have less effect than more recent ones
* Harder to find long-distance dependencies

The dog that chased two cats is brown
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Vanishing gradient

Problem
* Older encoder inputs have less effect than more recent ones
* Harder to find long-distance dependencies

The dog that chased two cats is brown

Long short-term memory (LSTM)
* More complex RNN to alleviate the vanishing gradient problem
* Two distinct hidden states updated differently, allowing better retention of information
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Vanishing gradient

Problem
* Older encoder inputs have less effect than more recent ones
* Harder to find long-distance dependencies

The dog that chased two cats is brown

Long short-term memory (LSTM)

* More complex RNN to alleviate the vanishing gradient problem

* Two distinct hidden states updated differently, allowing better retention of information

* Bidirectional LSTMs: reading input from front-to-back and back-to-front, combining results
* Gated recurrent unit (GRU): similar to LSTM but simpler
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Vanishing gradient

Attention

* Calculates a probability distribution across all encoding steps
* Combines all encoder outputs weighted by the probability distribution
* Using the result as additional decoder input
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Encoder-decoder RNN + Attention
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Transformer

Attention Is All You Need
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUSs, a small fraction of the training costs of the
best models from the literature.



Transformer

,—[ Add + normalize
1

]

Feed-forward

[ Add + normalize

;

Multi-head
self-attention

Linear +
softmax

[ Add + normalize }\
N

i

Feed-forward

[ Add + normalize

;

Multi-head
self-attention

Add + normalize ]

Input embeddings +
positional encoding

;

Multi-head
self-attention

Input embeddings +
positional encoding

36



Transformer

Each input word has an embedding, which is combined with positional encoding.
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Transformer

Each input word has an embedding, which is combined with positional encoding.
Input goes through multi-head self-attention, creating new contextual encodings for each token.

Contextual encoding for each token is calculated from previous embeddings of each token.

11 went 2 for 3 ad run 5

11 went 2 for 3 ad run 5

went for a run
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Transformer

Each input word has an embedding, which is combined with
positional encoding.

Input embeddings +
positional encoding
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Transformer

Each input word has an embedding, which is combined with
positional encoding.

Each Transformer layer contains (several) attention heads.

An attention head contains three weight matrices:
query weights: W,
key weigths: Wi
value weights: W,

Input embedding x; is multiplied by each matrix, which yields:

guery-vector: gi = xiWj
key-vector: ki = xiWx
value-vector: v; = x,W,

Multi-head
self-attention

|

Input embeddings +
positional encoding
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Transformer

Each input word has an embedding, which is combined with
positional encoding.

Each Transformer layer contains (several) attention heads.

An attention head contains three weight matrices:
query weights: W,
key weigths: Wi
value weights: W,

Input embedding x; is multiplied by each matrix, which yields:
query-vector: qi = xiWjq
key-vector: ki = xiWx
value-vector: v; = x;\W,

Attention between inputs / and J:

a,=softmax( 4% ) (d« = dimensionality of k)

Vd,

Output for input / = sum of all v;weighted with a;
(contextual encoding)

Multi-head
self-attention

|

Input embeddings +
positional encoding
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Transformer

Each input word has an embedding, which is combined with
positional encoding.

Multi-head self-attention:
QK"

vd,

Attention(Q, K,V )=softmax( %

Q: query matrix
K: key matrix
V. value matrix

Multi-head
self-attention

|

Input embeddings +
positional encoding




Transformer

Each input word has an embedding, which is combined with
positional encoding.

Input goes through multi-head self-attention.

Outputs of attention heads are combined
(+ residual connections).
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Transformer

Each input word has an embedding, which is combined with
positional encoding.

Input goes through multi-head self-attention.

Outputs of attention heads are combined
(+ residual connections).

,{ Add + normalize
1

Output functions as input to a feed-forward network i
(+ residual connections). || Feedforward

1
\ [ Add + normalize

i

Multi-head
self-attention

Input embeddings +
positional encoding

44



Transformer

Encoder-decoder Transformer: the decoder is like the encoder,
but gets additional input via encoder-decoder attention
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RNN vs. Transformer?
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RNN vs. Transformer?

RNN

Transformer

Based on recurrent connections

NoO recurrent connections

Attention is a useful addition

Fully Attention-based

Goes through the input one token at a time
Input goes through multi-head sell

Goes through all tokens in parallel
-attention.

Generates one representation of the whole
iInput (last encoding step)

Generates a separate encoding for each
input token

Order between tokens arises indirectly via
processing steps

Positional encoding added to each input
token separately

Long-distance dependencies are especially
challenging (vanishing gradient)

Distance between tokens has no direct
impact on the strength of their connection
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Large Language Models (LLMs)



Popular LLMs
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BERT: predicting masked tokens

dog
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BERT: predicting masked tokens
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BERT: classifying whole texts

declarative
4 I
BERT
\_ J

I

The dog chased the cat

guestion

4 N
BERT

- A/

I

Did the dog chase the cat

52



BERT: classifying whole texts
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BERT: classifying whole texts
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GPT: predicting the next token

The dog chased the

55



&1

I

GPT

I

PROMPT

GPT: predicting the next token

t

I

GPT

> (...)

I

PROMPT +t;

I

GPT

I

PROMPT +t1 + ... + th

56



BERT vs. GPT

BERT
(Bidirectional Encoder
Representations from Transformers)

GPT
(Generative Pre-trained
Transformer)

Architecture

Transformer-encoder

Transformer-decoder

Input

Text

Prompt + prior output

Output

Encoding of each token

Next token

Training

Predicting masked tokens

Predicting upcoming text
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LLM variants

Comparison|  BERT | RoBERTa | DStIBERT | ALBERT
October 11, 2018 July 26, 2019 October 2, 2019 September 26, 2019
Patamceere Base: 110M Base: 125 Base: 66 Base: 12M
Large: 340M Large: 355 : Large: 18M
Layers /Hidden g, .o 15/768/12  Base:12/768/12 Base: 12 / 768 / 12
Dimensions / Self- g ; Base: 6 /768 /12 :
Attanton Hleads Large: 24 / 1024 / 16 Large: 24 / 1024 / 16 Large: 24 / 1024 / 16
Training Time Base: 8 x V100 x 12d 1024 x V100 x 1 day Base: 8 x V100 x 3.5d [not given]
g Large: 280 x V100 x 1d  (4-5x more than BERT) (4 times less than BERT) Large: 1.7x faster
Outperforming SOTA in 97% of BERT-base’s
Perfi 88.5 on GLUE 89.4 on GLUE
i ekin Oct 2018 s performance on GLUE A
BERT + CCN +
Pre-Training BooksCorpus + English OpenWebText i\';tsories BooksCorpus + English  BooksCorpus + English
Data Wikipedia= 16 GB P - 160 GB Wikipedia= 16 GB Wikipedia= 16 GB
Bidirectional Trans- BERT without NSP, o BERT with reduced para-
Mettiod former, MLM & NSP  Using Dynamic Masking BERT Distillation meters & SOP (not NSP)

https://360digitmg.com/blog/bert-variants-and-their-differences

(cI il June 2018

February
2019

GPT-2

(el June 2020

March
2023

GPT-4

Training Data

Common Crawl, BookCorpus

Common Crawl, BookCorpus, WebText

Common Crawl, BookCorpus,

Wikipedia, Books, Articles, and more

Unknown

No. of Parameters

117 million

1.5 billion

175 billion

Estimated to be in

trillions

Max. Sequence

Length

1024

2048

4096

Unknown

https://www.makeuseof.com/gpt-models-explained-and-compared/
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Interpreting LLMs



Methods

Behavioral methods
* Measuring the performance of LLMs on linguistically relevant data
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Methods

Behavioral methods
* Measuring the performance of LLMs on linguistically relevant data

* LSTMs and Transformers learn some long-distance dependencies, but commonly rely on
linear order rather than hierarchical structure

1. The boy who has talked can read.
). Can the boy who has talked _ read?
>. *Has the boy who _ talked can read?
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Methods

Attention visualization

* Displaying the allocation of attention for each contextual encoding
* Challenge: only concerns the input, not the hidden layers

The
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Probing

* Mapping embeddings of pre-trained LLMs to linguistic labels
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https://nlp.stanford.edu/~johnhew/structural-probe.htmi


https://nlp.stanford.edu/~johnhew/structural-probe.html

Probing

* Mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations
* Parameter-free probing: unsupervised “bottom-up” alternative (\Wu et al. 2020)

Supervised: Parameter-free:

l Input \|::> - => |0utput\ l Input \|:> - :> | Output\

\
" S
N5V NP VP
Probe PN
V/\NP vV NP

)
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“BERTology” (Rogers et al. 2020)

Grammatical specialization of layers
* Early layers: superficial information (e.g. part-of-speech, word-order)
* Middle layers: syntactic structure
* Late layers: abstract semantics (e.g. argument structure)

What does BERT learn about the structure of language?

Ganesh Jawahar

Benoit Sagot

Inria, France

Djamé Seddah

{firstname.lastname } @inria.fr

BERT Rediscovers the Classical NLP Pipeline

Tan Tenney'  Dipanjan Das'  Ellie Pavlick'*
'Google Research  “Brown University

[iftannay dAinaniand anavlickl@annala ~am
Finding Universal Grammatical Relations in Multilingual BERT

Ethan A. Chi, John Hewitt, and Christopher D. Manning
Department of Computer Science
Stanford University
{ethanchi, johnhew,manning}@cs.stanford.edu
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“BERTology” (Rogers et al. 2020)

Grammatical specialization of layers

* Early layers: superficial information (e.g. part-of-speech, word-order)

* Middle layers: syntactic structure

* Late layers: abstract semantics (e.g. argument structure)
* Semantics can also be distributed across layers

What does BERT learn about the structure of language?

Ganesh Jawahar

Benoit Sagot

Inria, France

Djamé Seddah

{firstname.lastname } @inria.fr

BERT Rediscovers the Classical NLP Pipeline

Tan Tenney'  Dipanjan Das'  Ellie Pavlick'*
'Google Research  “Brown University

[iftannay dAinaniand anavlickl@annala ~am
Finding Universal Grammatical Relations in Multilingual BERT

Ethan A. Chi, John Hewitt, and Christopher D. Manning
Department of Computer Science
Stanford University
{ethanchi, johnhew,manning}@cs.stanford.edu
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“BERTology” (Rogers et al. 2020)

Syntactic structure

* Probably not directly in attention heads

* But encodings can be used to construct syntax

* BERT is sensitive to grammatical relations such as agreement

* But changing word-order or removing arguments doesn’t always have an effect

Semantic information
* Thematic roles partly reconstructable via probing
* Challenges with e.g. names and numbers

“World knowledge”
* LLMs succeed at certain pragmatic resoning tasks
* Difficulties with tasks that require multi-step reasoning
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Challenges (Kulmizev & Nivre 2022)

Grammar vs. “coding properties”
* Syntactic relations (e.g. “subject”) can be coded by word-order, agreement, etc.

Assumptions about grammatical formalism
* Choice of formalism impacts probing results

Separating variables
* Data, model architecture, task, linguistic phenomenon

Specifying research questions
* What does the model learn?
* What could the model learn?
* What must the model learn?

68



Challenges (Kulmizev & Nivre 2022)

“(...) hypotheses, methodologies, and conclusions comprise many conflicting insights, giving rise
to a paradoxical picture reminiscent of Schrodinger's cat — where syntax appears to be
simultaneously dead and alive inside the black box models.”
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Challenges (my work)

Ambiguity of “linguistic representation”
* Are linguistic properties in the data or in cognition?

“John saw Mary”




Challenges (my work)

Ambiguity of “linguistic representation”
* Are linguistic properties in the data or in cognition?

“It remains for linguists to show, in detail, that the speaker has no ‘ideas’, and that the noise is
sufficient.”

It is appropriate, in my opinion, to regard the grammar of L as a representation of fundamental
aspects of the knowledge of L possessed by the speaker-hearer who has mastered L.”
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Challenges

Input

> e
VvV NP

T ?2??

0.13452 0.34562 0.65387 0.07501 0.10053
0.06753 0.28746 0.98463 0.44763 0.00562
0.34672 0.20056 0.94461 0.37004 0.02204

=> ‘ => -
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